cannam@95: /* cannam@95: * Copyright (c) 2005 Matteo Frigo cannam@95: * Copyright (c) 2005 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: cannam@95: /* Do an R{E,O}DFT00 problem (of an odd length n) recursively via an cannam@95: R{E,O}DFT00 problem and an RDFT problem of half the length. cannam@95: cannam@95: This works by "logically" expanding the array to a real-even/odd DFT of cannam@95: length 2n-/+2 and then applying the split-radix algorithm. cannam@95: cannam@95: In this way, we can avoid having to pad to twice the length cannam@95: (ala redft00-r2hc-pad), saving a factor of ~2 for n=2^m+/-1, cannam@95: but don't incur the accuracy loss that the "ordinary" algorithm cannam@95: sacrifices (ala redft00-r2hc.c). cannam@95: */ cannam@95: cannam@95: #include "reodft.h" cannam@95: cannam@95: typedef struct { cannam@95: solver super; cannam@95: } S; cannam@95: cannam@95: typedef struct { cannam@95: plan_rdft super; cannam@95: plan *clde, *cldo; cannam@95: twid *td; cannam@95: INT is, os; cannam@95: INT n; cannam@95: INT vl; cannam@95: INT ivs, ovs; cannam@95: } P; cannam@95: cannam@95: /* redft00 */ cannam@95: static void apply_e(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: INT is = ego->is, os = ego->os; cannam@95: INT i, j, n = ego->n + 1, n2 = (n-1)/2; cannam@95: INT iv, vl = ego->vl; cannam@95: INT ivs = ego->ivs, ovs = ego->ovs; cannam@95: R *W = ego->td->W - 2; cannam@95: R *buf; cannam@95: cannam@95: buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); cannam@95: cannam@95: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { cannam@95: /* do size (n-1)/2 r2hc transform of odd-indexed elements cannam@95: with stride 4, "wrapping around" end of array with even cannam@95: boundary conditions */ cannam@95: for (j = 0, i = 1; i < n; i += 4) cannam@95: buf[j++] = I[is * i]; cannam@95: for (i = 2*n-2-i; i > 0; i -= 4) cannam@95: buf[j++] = I[is * i]; cannam@95: { cannam@95: plan_rdft *cld = (plan_rdft *) ego->cldo; cannam@95: cld->apply((plan *) cld, buf, buf); cannam@95: } cannam@95: cannam@95: /* do size (n+1)/2 redft00 of the even-indexed elements, cannam@95: writing to O: */ cannam@95: { cannam@95: plan_rdft *cld = (plan_rdft *) ego->clde; cannam@95: cld->apply((plan *) cld, I, O); cannam@95: } cannam@95: cannam@95: /* combine the results with the twiddle factors to get output */ cannam@95: { /* DC element */ cannam@95: E b20 = O[0], b0 = K(2.0) * buf[0]; cannam@95: O[0] = b20 + b0; cannam@95: O[2*(n2*os)] = b20 - b0; cannam@95: /* O[n2*os] = O[n2*os]; */ cannam@95: } cannam@95: for (i = 1; i < n2 - i; ++i) { cannam@95: E ap, am, br, bi, wr, wi, wbr, wbi; cannam@95: br = buf[i]; cannam@95: bi = buf[n2 - i]; cannam@95: wr = W[2*i]; cannam@95: wi = W[2*i+1]; cannam@95: #if FFT_SIGN == -1 cannam@95: wbr = K(2.0) * (wr*br + wi*bi); cannam@95: wbi = K(2.0) * (wr*bi - wi*br); cannam@95: #else cannam@95: wbr = K(2.0) * (wr*br - wi*bi); cannam@95: wbi = K(2.0) * (wr*bi + wi*br); cannam@95: #endif cannam@95: ap = O[i*os]; cannam@95: O[i*os] = ap + wbr; cannam@95: O[(2*n2 - i)*os] = ap - wbr; cannam@95: am = O[(n2 - i)*os]; cannam@95: #if FFT_SIGN == -1 cannam@95: O[(n2 - i)*os] = am - wbi; cannam@95: O[(n2 + i)*os] = am + wbi; cannam@95: #else cannam@95: O[(n2 - i)*os] = am + wbi; cannam@95: O[(n2 + i)*os] = am - wbi; cannam@95: #endif cannam@95: } cannam@95: if (i == n2 - i) { /* Nyquist element */ cannam@95: E ap, wbr; cannam@95: wbr = K(2.0) * (W[2*i] * buf[i]); cannam@95: ap = O[i*os]; cannam@95: O[i*os] = ap + wbr; cannam@95: O[(2*n2 - i)*os] = ap - wbr; cannam@95: } cannam@95: } cannam@95: cannam@95: X(ifree)(buf); cannam@95: } cannam@95: cannam@95: /* rodft00 */ cannam@95: static void apply_o(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: INT is = ego->is, os = ego->os; cannam@95: INT i, j, n = ego->n - 1, n2 = (n+1)/2; cannam@95: INT iv, vl = ego->vl; cannam@95: INT ivs = ego->ivs, ovs = ego->ovs; cannam@95: R *W = ego->td->W - 2; cannam@95: R *buf; cannam@95: cannam@95: buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); cannam@95: cannam@95: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { cannam@95: /* do size (n+1)/2 r2hc transform of even-indexed elements cannam@95: with stride 4, "wrapping around" end of array with odd cannam@95: boundary conditions */ cannam@95: for (j = 0, i = 0; i < n; i += 4) cannam@95: buf[j++] = I[is * i]; cannam@95: for (i = 2*n-i; i > 0; i -= 4) cannam@95: buf[j++] = -I[is * i]; cannam@95: { cannam@95: plan_rdft *cld = (plan_rdft *) ego->cldo; cannam@95: cld->apply((plan *) cld, buf, buf); cannam@95: } cannam@95: cannam@95: /* do size (n-1)/2 rodft00 of the odd-indexed elements, cannam@95: writing to O: */ cannam@95: { cannam@95: plan_rdft *cld = (plan_rdft *) ego->clde; cannam@95: if (I == O) { cannam@95: /* can't use I+is and I, subplan would lose in-placeness */ cannam@95: cld->apply((plan *) cld, I + is, I + is); cannam@95: /* we could maybe avoid this copy by modifying the cannam@95: twiddle loop, but currently I can't be bothered. */ cannam@95: A(is >= os); cannam@95: for (i = 0; i < n2-1; ++i) cannam@95: O[os*i] = I[is*(i+1)]; cannam@95: } cannam@95: else cannam@95: cld->apply((plan *) cld, I + is, O); cannam@95: } cannam@95: cannam@95: /* combine the results with the twiddle factors to get output */ cannam@95: O[(n2-1)*os] = K(2.0) * buf[0]; cannam@95: for (i = 1; i < n2 - i; ++i) { cannam@95: E ap, am, br, bi, wr, wi, wbr, wbi; cannam@95: br = buf[i]; cannam@95: bi = buf[n2 - i]; cannam@95: wr = W[2*i]; cannam@95: wi = W[2*i+1]; cannam@95: #if FFT_SIGN == -1 cannam@95: wbr = K(2.0) * (wr*br + wi*bi); cannam@95: wbi = K(2.0) * (wi*br - wr*bi); cannam@95: #else cannam@95: wbr = K(2.0) * (wr*br - wi*bi); cannam@95: wbi = K(2.0) * (wr*bi + wi*br); cannam@95: #endif cannam@95: ap = O[(i-1)*os]; cannam@95: O[(i-1)*os] = wbi + ap; cannam@95: O[(2*n2-1 - i)*os] = wbi - ap; cannam@95: am = O[(n2-1 - i)*os]; cannam@95: #if FFT_SIGN == -1 cannam@95: O[(n2-1 - i)*os] = wbr + am; cannam@95: O[(n2-1 + i)*os] = wbr - am; cannam@95: #else cannam@95: O[(n2-1 - i)*os] = wbr + am; cannam@95: O[(n2-1 + i)*os] = wbr - am; cannam@95: #endif cannam@95: } cannam@95: if (i == n2 - i) { /* Nyquist element */ cannam@95: E ap, wbi; cannam@95: wbi = K(2.0) * (W[2*i+1] * buf[i]); cannam@95: ap = O[(i-1)*os]; cannam@95: O[(i-1)*os] = wbi + ap; cannam@95: O[(2*n2-1 - i)*os] = wbi - ap; cannam@95: } cannam@95: } cannam@95: cannam@95: X(ifree)(buf); cannam@95: } cannam@95: cannam@95: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: static const tw_instr reodft00e_tw[] = { cannam@95: { TW_COS, 1, 1 }, cannam@95: { TW_SIN, 1, 1 }, cannam@95: { TW_NEXT, 1, 0 } cannam@95: }; cannam@95: cannam@95: X(plan_awake)(ego->clde, wakefulness); cannam@95: X(plan_awake)(ego->cldo, wakefulness); cannam@95: X(twiddle_awake)(wakefulness, &ego->td, reodft00e_tw, cannam@95: 2*ego->n, 1, ego->n/4); cannam@95: } cannam@95: cannam@95: static void destroy(plan *ego_) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_destroy_internal)(ego->cldo); cannam@95: X(plan_destroy_internal)(ego->clde); cannam@95: } cannam@95: cannam@95: static void print(const plan *ego_, printer *p) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: if (ego->super.apply == apply_e) cannam@95: p->print(p, "(redft00e-splitradix-%D%v%(%p%)%(%p%))", cannam@95: ego->n + 1, ego->vl, ego->clde, ego->cldo); cannam@95: else cannam@95: p->print(p, "(rodft00e-splitradix-%D%v%(%p%)%(%p%))", cannam@95: ego->n - 1, ego->vl, ego->clde, ego->cldo); cannam@95: } cannam@95: cannam@95: static int applicable0(const solver *ego_, const problem *p_) cannam@95: { cannam@95: const problem_rdft *p = (const problem_rdft *) p_; cannam@95: UNUSED(ego_); cannam@95: cannam@95: return (1 cannam@95: && p->sz->rnk == 1 cannam@95: && p->vecsz->rnk <= 1 cannam@95: && (p->kind[0] == REDFT00 || p->kind[0] == RODFT00) cannam@95: && p->sz->dims[0].n > 1 /* don't create size-0 sub-plans */ cannam@95: && p->sz->dims[0].n % 2 /* odd: 4 divides "logical" DFT */ cannam@95: && (p->I != p->O || p->vecsz->rnk == 0 cannam@95: || p->vecsz->dims[0].is == p->vecsz->dims[0].os) cannam@95: && (p->kind[0] != RODFT00 || p->I != p->O || cannam@95: p->sz->dims[0].is >= p->sz->dims[0].os) /* laziness */ cannam@95: ); cannam@95: } cannam@95: cannam@95: static int applicable(const solver *ego, const problem *p, const planner *plnr) cannam@95: { cannam@95: return (!NO_SLOWP(plnr) && applicable0(ego, p)); cannam@95: } cannam@95: cannam@95: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@95: { cannam@95: P *pln; cannam@95: const problem_rdft *p; cannam@95: plan *clde, *cldo; cannam@95: R *buf; cannam@95: INT n, n0; cannam@95: opcnt ops; cannam@95: int inplace_odd; cannam@95: cannam@95: static const plan_adt padt = { cannam@95: X(rdft_solve), awake, print, destroy cannam@95: }; cannam@95: cannam@95: if (!applicable(ego_, p_, plnr)) cannam@95: return (plan *)0; cannam@95: cannam@95: p = (const problem_rdft *) p_; cannam@95: cannam@95: n = (n0 = p->sz->dims[0].n) + (p->kind[0] == REDFT00 ? (INT)-1 : (INT)1); cannam@95: A(n > 0 && n % 2 == 0); cannam@95: buf = (R *) MALLOC(sizeof(R) * (n/2), BUFFERS); cannam@95: cannam@95: inplace_odd = p->kind[0]==RODFT00 && p->I == p->O; cannam@95: clde = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( cannam@95: X(mktensor_1d)(n0-n/2, 2*p->sz->dims[0].is, cannam@95: inplace_odd ? p->sz->dims[0].is cannam@95: : p->sz->dims[0].os), cannam@95: X(mktensor_0d)(), cannam@95: TAINT(p->I cannam@95: + p->sz->dims[0].is * (p->kind[0]==RODFT00), cannam@95: p->vecsz->rnk ? p->vecsz->dims[0].is : 0), cannam@95: TAINT(p->O cannam@95: + p->sz->dims[0].is * inplace_odd, cannam@95: p->vecsz->rnk ? p->vecsz->dims[0].os : 0), cannam@95: p->kind[0])); cannam@95: if (!clde) { cannam@95: X(ifree)(buf); cannam@95: return (plan *)0; cannam@95: } cannam@95: cannam@95: cldo = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( cannam@95: X(mktensor_1d)(n/2, 1, 1), cannam@95: X(mktensor_0d)(), cannam@95: buf, buf, R2HC)); cannam@95: X(ifree)(buf); cannam@95: if (!cldo) cannam@95: return (plan *)0; cannam@95: cannam@95: pln = MKPLAN_RDFT(P, &padt, p->kind[0] == REDFT00 ? apply_e : apply_o); cannam@95: cannam@95: pln->n = n; cannam@95: pln->is = p->sz->dims[0].is; cannam@95: pln->os = p->sz->dims[0].os; cannam@95: pln->clde = clde; cannam@95: pln->cldo = cldo; cannam@95: pln->td = 0; cannam@95: cannam@95: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); cannam@95: cannam@95: X(ops_zero)(&ops); cannam@95: ops.other = n/2; cannam@95: ops.add = (p->kind[0]==REDFT00 ? (INT)2 : (INT)0) + cannam@95: (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; cannam@95: ops.mul = 1 + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; cannam@95: cannam@95: /* tweak ops.other so that r2hc-pad is used for small sizes, which cannam@95: seems to be a lot faster on my machine: */ cannam@95: ops.other += 256; cannam@95: cannam@95: X(ops_zero)(&pln->super.super.ops); cannam@95: X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); cannam@95: X(ops_madd2)(pln->vl, &clde->ops, &pln->super.super.ops); cannam@95: X(ops_madd2)(pln->vl, &cldo->ops, &pln->super.super.ops); cannam@95: cannam@95: return &(pln->super.super); cannam@95: } cannam@95: cannam@95: /* constructor */ cannam@95: static solver *mksolver(void) cannam@95: { cannam@95: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; cannam@95: S *slv = MKSOLVER(S, &sadt); cannam@95: return &(slv->super); cannam@95: } cannam@95: cannam@95: void X(reodft00e_splitradix_register)(planner *p) cannam@95: { cannam@95: REGISTER_SOLVER(p, mksolver()); cannam@95: }