Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: #include "verify.h" Chris@10: #include Chris@10: #include Chris@10: #include Chris@10: Chris@10: /* Chris@10: * Utility functions: Chris@10: */ Chris@10: static double dabs(double x) { return (x < 0.0) ? -x : x; } Chris@10: static double dmin(double x, double y) { return (x < y) ? x : y; } Chris@10: static double norm2(double x, double y) { return dmax(dabs(x), dabs(y)); } Chris@10: Chris@10: double dmax(double x, double y) { return (x > y) ? x : y; } Chris@10: Chris@10: static double aerror(C *a, C *b, int n) Chris@10: { Chris@10: if (n > 0) { Chris@10: /* compute the relative Linf error */ Chris@10: double e = 0.0, mag = 0.0; Chris@10: int i; Chris@10: Chris@10: for (i = 0; i < n; ++i) { Chris@10: e = dmax(e, norm2(c_re(a[i]) - c_re(b[i]), Chris@10: c_im(a[i]) - c_im(b[i]))); Chris@10: mag = dmax(mag, Chris@10: dmin(norm2(c_re(a[i]), c_im(a[i])), Chris@10: norm2(c_re(b[i]), c_im(b[i])))); Chris@10: } Chris@10: e /= mag; Chris@10: Chris@10: #ifdef HAVE_ISNAN Chris@10: BENCH_ASSERT(!isnan(e)); Chris@10: #endif Chris@10: return e; Chris@10: } else Chris@10: return 0.0; Chris@10: } Chris@10: Chris@10: #ifdef HAVE_DRAND48 Chris@10: # if defined(HAVE_DECL_DRAND48) && !HAVE_DECL_DRAND48 Chris@10: extern double drand48(void); Chris@10: # endif Chris@10: double mydrand(void) Chris@10: { Chris@10: return drand48() - 0.5; Chris@10: } Chris@10: #else Chris@10: double mydrand(void) Chris@10: { Chris@10: double d = rand(); Chris@10: return (d / (double) RAND_MAX) - 0.5; Chris@10: } Chris@10: #endif Chris@10: Chris@10: void arand(C *a, int n) Chris@10: { Chris@10: int i; Chris@10: Chris@10: /* generate random inputs */ Chris@10: for (i = 0; i < n; ++i) { Chris@10: c_re(a[i]) = mydrand(); Chris@10: c_im(a[i]) = mydrand(); Chris@10: } Chris@10: } Chris@10: Chris@10: /* make array real */ Chris@10: void mkreal(C *A, int n) Chris@10: { Chris@10: int i; Chris@10: Chris@10: for (i = 0; i < n; ++i) { Chris@10: c_im(A[i]) = 0.0; Chris@10: } Chris@10: } Chris@10: Chris@10: static void assign_conj(C *Ac, C *A, int rank, const bench_iodim *dim, int stride) Chris@10: { Chris@10: if (rank == 0) { Chris@10: c_re(*Ac) = c_re(*A); Chris@10: c_im(*Ac) = -c_im(*A); Chris@10: } Chris@10: else { Chris@10: int i, n0 = dim[rank - 1].n, s = stride; Chris@10: rank -= 1; Chris@10: stride *= n0; Chris@10: assign_conj(Ac, A, rank, dim, stride); Chris@10: for (i = 1; i < n0; ++i) Chris@10: assign_conj(Ac + (n0 - i) * s, A + i * s, rank, dim, stride); Chris@10: } Chris@10: } Chris@10: Chris@10: /* make array hermitian */ Chris@10: void mkhermitian(C *A, int rank, const bench_iodim *dim, int stride) Chris@10: { Chris@10: if (rank == 0) Chris@10: c_im(*A) = 0.0; Chris@10: else { Chris@10: int i, n0 = dim[rank - 1].n, s = stride; Chris@10: rank -= 1; Chris@10: stride *= n0; Chris@10: mkhermitian(A, rank, dim, stride); Chris@10: for (i = 1; 2*i < n0; ++i) Chris@10: assign_conj(A + (n0 - i) * s, A + i * s, rank, dim, stride); Chris@10: if (2*i == n0) Chris@10: mkhermitian(A + i * s, rank, dim, stride); Chris@10: } Chris@10: } Chris@10: Chris@10: void mkhermitian1(C *a, int n) Chris@10: { Chris@10: bench_iodim d; Chris@10: Chris@10: d.n = n; Chris@10: d.is = d.os = 1; Chris@10: mkhermitian(a, 1, &d, 1); Chris@10: } Chris@10: Chris@10: /* C = A */ Chris@10: void acopy(C *c, C *a, int n) Chris@10: { Chris@10: int i; Chris@10: Chris@10: for (i = 0; i < n; ++i) { Chris@10: c_re(c[i]) = c_re(a[i]); Chris@10: c_im(c[i]) = c_im(a[i]); Chris@10: } Chris@10: } Chris@10: Chris@10: /* C = A + B */ Chris@10: void aadd(C *c, C *a, C *b, int n) Chris@10: { Chris@10: int i; Chris@10: Chris@10: for (i = 0; i < n; ++i) { Chris@10: c_re(c[i]) = c_re(a[i]) + c_re(b[i]); Chris@10: c_im(c[i]) = c_im(a[i]) + c_im(b[i]); Chris@10: } Chris@10: } Chris@10: Chris@10: /* C = A - B */ Chris@10: void asub(C *c, C *a, C *b, int n) Chris@10: { Chris@10: int i; Chris@10: Chris@10: for (i = 0; i < n; ++i) { Chris@10: c_re(c[i]) = c_re(a[i]) - c_re(b[i]); Chris@10: c_im(c[i]) = c_im(a[i]) - c_im(b[i]); Chris@10: } Chris@10: } Chris@10: Chris@10: /* B = rotate left A (complex) */ Chris@10: void arol(C *b, C *a, int n, int nb, int na) Chris@10: { Chris@10: int i, ib, ia; Chris@10: Chris@10: for (ib = 0; ib < nb; ++ib) { Chris@10: for (i = 0; i < n - 1; ++i) Chris@10: for (ia = 0; ia < na; ++ia) { Chris@10: C *pb = b + (ib * n + i) * na + ia; Chris@10: C *pa = a + (ib * n + i + 1) * na + ia; Chris@10: c_re(*pb) = c_re(*pa); Chris@10: c_im(*pb) = c_im(*pa); Chris@10: } Chris@10: Chris@10: for (ia = 0; ia < na; ++ia) { Chris@10: C *pb = b + (ib * n + n - 1) * na + ia; Chris@10: C *pa = a + ib * n * na + ia; Chris@10: c_re(*pb) = c_re(*pa); Chris@10: c_im(*pb) = c_im(*pa); Chris@10: } Chris@10: } Chris@10: } Chris@10: Chris@10: void aphase_shift(C *b, C *a, int n, int nb, int na, double sign) Chris@10: { Chris@10: int j, jb, ja; Chris@10: trigreal twopin; Chris@10: twopin = K2PI / n; Chris@10: Chris@10: for (jb = 0; jb < nb; ++jb) Chris@10: for (j = 0; j < n; ++j) { Chris@10: trigreal s = sign * SIN(j * twopin); Chris@10: trigreal c = COS(j * twopin); Chris@10: Chris@10: for (ja = 0; ja < na; ++ja) { Chris@10: int k = (jb * n + j) * na + ja; Chris@10: c_re(b[k]) = c_re(a[k]) * c - c_im(a[k]) * s; Chris@10: c_im(b[k]) = c_re(a[k]) * s + c_im(a[k]) * c; Chris@10: } Chris@10: } Chris@10: } Chris@10: Chris@10: /* A = alpha * A (complex, in place) */ Chris@10: void ascale(C *a, C alpha, int n) Chris@10: { Chris@10: int i; Chris@10: Chris@10: for (i = 0; i < n; ++i) { Chris@10: R xr = c_re(a[i]), xi = c_im(a[i]); Chris@10: c_re(a[i]) = xr * c_re(alpha) - xi * c_im(alpha); Chris@10: c_im(a[i]) = xr * c_im(alpha) + xi * c_re(alpha); Chris@10: } Chris@10: } Chris@10: Chris@10: Chris@10: double acmp(C *a, C *b, int n, const char *test, double tol) Chris@10: { Chris@10: double d = aerror(a, b, n); Chris@10: if (d > tol) { Chris@10: ovtpvt_err("Found relative error %e (%s)\n", d, test); Chris@10: Chris@10: { Chris@10: int i, N; Chris@10: N = n > 300 && verbose <= 2 ? 300 : n; Chris@10: for (i = 0; i < N; ++i) Chris@10: ovtpvt_err("%8d %16.12f %16.12f %16.12f %16.12f\n", i, Chris@10: (double) c_re(a[i]), (double) c_im(a[i]), Chris@10: (double) c_re(b[i]), (double) c_im(b[i])); Chris@10: } Chris@10: Chris@10: bench_exit(EXIT_FAILURE); Chris@10: } Chris@10: return d; Chris@10: } Chris@10: Chris@10: Chris@10: /* Chris@10: * Implementation of the FFT tester described in Chris@10: * Chris@10: * Funda Ergün. Testing multivariate linear functions: Overcoming the Chris@10: * generator bottleneck. In Proceedings of the Twenty-Seventh Annual Chris@10: * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas, Chris@10: * Nevada, 29 May--1 June 1995. Chris@10: * Chris@10: * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without Chris@10: * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000). Chris@10: */ Chris@10: Chris@10: static double impulse0(dofft_closure *k, Chris@10: int n, int vecn, Chris@10: C *inA, C *inB, C *inC, Chris@10: C *outA, C *outB, C *outC, Chris@10: C *tmp, int rounds, double tol) Chris@10: { Chris@10: int N = n * vecn; Chris@10: double e = 0.0; Chris@10: int j; Chris@10: Chris@10: k->apply(k, inA, tmp); Chris@10: e = dmax(e, acmp(tmp, outA, N, "impulse 1", tol)); Chris@10: Chris@10: for (j = 0; j < rounds; ++j) { Chris@10: arand(inB, N); Chris@10: asub(inC, inA, inB, N); Chris@10: k->apply(k, inB, outB); Chris@10: k->apply(k, inC, outC); Chris@10: aadd(tmp, outB, outC, N); Chris@10: e = dmax(e, acmp(tmp, outA, N, "impulse", tol)); Chris@10: } Chris@10: return e; Chris@10: } Chris@10: Chris@10: double impulse(dofft_closure *k, Chris@10: int n, int vecn, Chris@10: C *inA, C *inB, C *inC, Chris@10: C *outA, C *outB, C *outC, Chris@10: C *tmp, int rounds, double tol) Chris@10: { Chris@10: int i, j; Chris@10: double e = 0.0; Chris@10: Chris@10: /* check impulsive input */ Chris@10: for (i = 0; i < vecn; ++i) { Chris@10: R x = (sqrt(n)*(i+1)) / (double)(vecn+1); Chris@10: for (j = 0; j < n; ++j) { Chris@10: c_re(inA[j + i * n]) = 0; Chris@10: c_im(inA[j + i * n]) = 0; Chris@10: c_re(outA[j + i * n]) = x; Chris@10: c_im(outA[j + i * n]) = 0; Chris@10: } Chris@10: c_re(inA[i * n]) = x; Chris@10: c_im(inA[i * n]) = 0; Chris@10: } Chris@10: Chris@10: e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC, Chris@10: tmp, rounds, tol)); Chris@10: Chris@10: /* check constant input */ Chris@10: for (i = 0; i < vecn; ++i) { Chris@10: R x = (i+1) / ((double)(vecn+1) * sqrt(n)); Chris@10: for (j = 0; j < n; ++j) { Chris@10: c_re(inA[j + i * n]) = x; Chris@10: c_im(inA[j + i * n]) = 0; Chris@10: c_re(outA[j + i * n]) = 0; Chris@10: c_im(outA[j + i * n]) = 0; Chris@10: } Chris@10: c_re(outA[i * n]) = n * x; Chris@10: c_im(outA[i * n]) = 0; Chris@10: } Chris@10: Chris@10: e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC, Chris@10: tmp, rounds, tol)); Chris@10: return e; Chris@10: } Chris@10: Chris@10: double linear(dofft_closure *k, int realp, Chris@10: int n, C *inA, C *inB, C *inC, C *outA, Chris@10: C *outB, C *outC, C *tmp, int rounds, double tol) Chris@10: { Chris@10: int j; Chris@10: double e = 0.0; Chris@10: Chris@10: for (j = 0; j < rounds; ++j) { Chris@10: C alpha, beta; Chris@10: c_re(alpha) = mydrand(); Chris@10: c_im(alpha) = realp ? 0.0 : mydrand(); Chris@10: c_re(beta) = mydrand(); Chris@10: c_im(beta) = realp ? 0.0 : mydrand(); Chris@10: arand(inA, n); Chris@10: arand(inB, n); Chris@10: k->apply(k, inA, outA); Chris@10: k->apply(k, inB, outB); Chris@10: Chris@10: ascale(outA, alpha, n); Chris@10: ascale(outB, beta, n); Chris@10: aadd(tmp, outA, outB, n); Chris@10: ascale(inA, alpha, n); Chris@10: ascale(inB, beta, n); Chris@10: aadd(inC, inA, inB, n); Chris@10: k->apply(k, inC, outC); Chris@10: Chris@10: e = dmax(e, acmp(outC, tmp, n, "linear", tol)); Chris@10: } Chris@10: return e; Chris@10: } Chris@10: Chris@10: Chris@10: Chris@10: double tf_shift(dofft_closure *k, Chris@10: int realp, const bench_tensor *sz, Chris@10: int n, int vecn, double sign, Chris@10: C *inA, C *inB, C *outA, C *outB, C *tmp, Chris@10: int rounds, double tol, int which_shift) Chris@10: { Chris@10: int nb, na, dim, N = n * vecn; Chris@10: int i, j; Chris@10: double e = 0.0; Chris@10: Chris@10: /* test 3: check the time-shift property */ Chris@10: /* the paper performs more tests, but this code should be fine too */ Chris@10: Chris@10: nb = 1; Chris@10: na = n; Chris@10: Chris@10: /* check shifts across all SZ dimensions */ Chris@10: for (dim = 0; dim < sz->rnk; ++dim) { Chris@10: int ncur = sz->dims[dim].n; Chris@10: Chris@10: na /= ncur; Chris@10: Chris@10: for (j = 0; j < rounds; ++j) { Chris@10: arand(inA, N); Chris@10: Chris@10: if (which_shift == TIME_SHIFT) { Chris@10: for (i = 0; i < vecn; ++i) { Chris@10: if (realp) mkreal(inA + i * n, n); Chris@10: arol(inB + i * n, inA + i * n, ncur, nb, na); Chris@10: } Chris@10: k->apply(k, inA, outA); Chris@10: k->apply(k, inB, outB); Chris@10: for (i = 0; i < vecn; ++i) Chris@10: aphase_shift(tmp + i * n, outB + i * n, ncur, Chris@10: nb, na, sign); Chris@10: e = dmax(e, acmp(tmp, outA, N, "time shift", tol)); Chris@10: } else { Chris@10: for (i = 0; i < vecn; ++i) { Chris@10: if (realp) Chris@10: mkhermitian(inA + i * n, sz->rnk, sz->dims, 1); Chris@10: aphase_shift(inB + i * n, inA + i * n, ncur, Chris@10: nb, na, -sign); Chris@10: } Chris@10: k->apply(k, inA, outA); Chris@10: k->apply(k, inB, outB); Chris@10: for (i = 0; i < vecn; ++i) Chris@10: arol(tmp + i * n, outB + i * n, ncur, nb, na); Chris@10: e = dmax(e, acmp(tmp, outA, N, "freq shift", tol)); Chris@10: } Chris@10: } Chris@10: Chris@10: nb *= ncur; Chris@10: } Chris@10: return e; Chris@10: } Chris@10: Chris@10: Chris@10: void preserves_input(dofft_closure *k, aconstrain constrain, Chris@10: int n, C *inA, C *inB, C *outB, int rounds) Chris@10: { Chris@10: int j; Chris@10: int recopy_input = k->recopy_input; Chris@10: Chris@10: k->recopy_input = 1; Chris@10: for (j = 0; j < rounds; ++j) { Chris@10: arand(inA, n); Chris@10: if (constrain) Chris@10: constrain(inA, n); Chris@10: Chris@10: acopy(inB, inA, n); Chris@10: k->apply(k, inB, outB); Chris@10: acmp(inB, inA, n, "preserves_input", 0.0); Chris@10: } Chris@10: k->recopy_input = recopy_input; Chris@10: } Chris@10: Chris@10: Chris@10: /* Make a copy of the size tensor, with the same dimensions, but with Chris@10: the strides corresponding to a "packed" row-major array with the Chris@10: given stride. */ Chris@10: bench_tensor *verify_pack(const bench_tensor *sz, int s) Chris@10: { Chris@10: bench_tensor *x = tensor_copy(sz); Chris@10: if (FINITE_RNK(x->rnk) && x->rnk > 0) { Chris@10: int i; Chris@10: x->dims[x->rnk - 1].is = s; Chris@10: x->dims[x->rnk - 1].os = s; Chris@10: for (i = x->rnk - 1; i > 0; --i) { Chris@10: x->dims[i - 1].is = x->dims[i].is * x->dims[i].n; Chris@10: x->dims[i - 1].os = x->dims[i].os * x->dims[i].n; Chris@10: } Chris@10: } Chris@10: return x; Chris@10: } Chris@10: Chris@10: static int all_zero(C *a, int n) Chris@10: { Chris@10: int i; Chris@10: for (i = 0; i < n; ++i) Chris@10: if (c_re(a[i]) != 0.0 || c_im(a[i]) != 0.0) Chris@10: return 0; Chris@10: return 1; Chris@10: } Chris@10: Chris@10: static int one_accuracy_test(dofft_closure *k, aconstrain constrain, Chris@10: int sign, int n, C *a, C *b, Chris@10: double t[6]) Chris@10: { Chris@10: double err[6]; Chris@10: Chris@10: if (constrain) Chris@10: constrain(a, n); Chris@10: Chris@10: if (all_zero(a, n)) Chris@10: return 0; Chris@10: Chris@10: k->apply(k, a, b); Chris@10: fftaccuracy(n, a, b, sign, err); Chris@10: Chris@10: t[0] += err[0]; Chris@10: t[1] += err[1] * err[1]; Chris@10: t[2] = dmax(t[2], err[2]); Chris@10: t[3] += err[3]; Chris@10: t[4] += err[4] * err[4]; Chris@10: t[5] = dmax(t[5], err[5]); Chris@10: Chris@10: return 1; Chris@10: } Chris@10: Chris@10: void accuracy_test(dofft_closure *k, aconstrain constrain, Chris@10: int sign, int n, C *a, C *b, int rounds, int impulse_rounds, Chris@10: double t[6]) Chris@10: { Chris@10: int r, i; Chris@10: int ntests = 0; Chris@10: bench_complex czero = {0, 0}; Chris@10: Chris@10: for (i = 0; i < 6; ++i) t[i] = 0.0; Chris@10: Chris@10: for (r = 0; r < rounds; ++r) { Chris@10: arand(a, n); Chris@10: if (one_accuracy_test(k, constrain, sign, n, a, b, t)) Chris@10: ++ntests; Chris@10: } Chris@10: Chris@10: /* impulses at beginning of array */ Chris@10: for (r = 0; r < impulse_rounds; ++r) { Chris@10: if (r > n - r - 1) Chris@10: continue; Chris@10: Chris@10: caset(a, n, czero); Chris@10: c_re(a[r]) = c_im(a[r]) = 1.0; Chris@10: Chris@10: if (one_accuracy_test(k, constrain, sign, n, a, b, t)) Chris@10: ++ntests; Chris@10: } Chris@10: Chris@10: /* impulses at end of array */ Chris@10: for (r = 0; r < impulse_rounds; ++r) { Chris@10: if (r <= n - r - 1) Chris@10: continue; Chris@10: Chris@10: caset(a, n, czero); Chris@10: c_re(a[n - r - 1]) = c_im(a[n - r - 1]) = 1.0; Chris@10: Chris@10: if (one_accuracy_test(k, constrain, sign, n, a, b, t)) Chris@10: ++ntests; Chris@10: } Chris@10: Chris@10: /* randomly-located impulses */ Chris@10: for (r = 0; r < impulse_rounds; ++r) { Chris@10: caset(a, n, czero); Chris@10: i = rand() % n; Chris@10: c_re(a[i]) = c_im(a[i]) = 1.0; Chris@10: Chris@10: if (one_accuracy_test(k, constrain, sign, n, a, b, t)) Chris@10: ++ntests; Chris@10: } Chris@10: Chris@10: t[0] /= ntests; Chris@10: t[1] = sqrt(t[1] / ntests); Chris@10: t[3] /= ntests; Chris@10: t[4] = sqrt(t[4] / ntests); Chris@10: Chris@10: fftaccuracy_done(); Chris@10: }