Chris@42: /* Chris@42: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@42: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@42: * Chris@42: * This program is free software; you can redistribute it and/or modify Chris@42: * it under the terms of the GNU General Public License as published by Chris@42: * the Free Software Foundation; either version 2 of the License, or Chris@42: * (at your option) any later version. Chris@42: * Chris@42: * This program is distributed in the hope that it will be useful, Chris@42: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@42: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@42: * GNU General Public License for more details. Chris@42: * Chris@42: * You should have received a copy of the GNU General Public License Chris@42: * along with this program; if not, write to the Free Software Chris@42: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@42: * Chris@42: */ Chris@42: Chris@42: Chris@42: /* Do an R{E,O}DFT11 problem via an R2HC problem of the same *odd* size, Chris@42: with some permutations and post-processing, as described in: Chris@42: Chris@42: S. C. Chan and K. L. Ho, "Fast algorithms for computing the Chris@42: discrete cosine transform," IEEE Trans. Circuits Systems II: Chris@42: Analog & Digital Sig. Proc. 39 (3), 185--190 (1992). Chris@42: Chris@42: (For even sizes, see reodft11e-radix2.c.) Chris@42: Chris@42: This algorithm is related to the 8 x n prime-factor-algorithm (PFA) Chris@42: decomposition of the size 8n "logical" DFT corresponding to the Chris@42: R{EO}DFT11. Chris@42: Chris@42: Aside from very confusing notation (several symbols are redefined Chris@42: from one line to the next), be aware that this paper has some Chris@42: errors. In particular, the signs are wrong in Eqs. (34-35). Also, Chris@42: Eqs. (36-37) should be simply C(k) = C(2k + 1 mod N), and similarly Chris@42: for S (or, equivalently, the second cases should have 2*N - 2*k - 1 Chris@42: instead of N - k - 1). Note also that in their definition of the Chris@42: DFT, similarly to FFTW's, the exponent's sign is -1, but they Chris@42: forgot to correspondingly multiply S (the sine terms) by -1. Chris@42: */ Chris@42: Chris@42: #include "reodft.h" Chris@42: Chris@42: typedef struct { Chris@42: solver super; Chris@42: } S; Chris@42: Chris@42: typedef struct { Chris@42: plan_rdft super; Chris@42: plan *cld; Chris@42: INT is, os; Chris@42: INT n; Chris@42: INT vl; Chris@42: INT ivs, ovs; Chris@42: rdft_kind kind; Chris@42: } P; Chris@42: Chris@42: static DK(SQRT2, +1.4142135623730950488016887242096980785696718753769); Chris@42: Chris@42: #define SGN_SET(x, i) ((i) % 2 ? -(x) : (x)) Chris@42: Chris@42: static void apply_re11(const plan *ego_, R *I, R *O) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: INT is = ego->is, os = ego->os; Chris@42: INT i, n = ego->n, n2 = n/2; Chris@42: INT iv, vl = ego->vl; Chris@42: INT ivs = ego->ivs, ovs = ego->ovs; Chris@42: R *buf; Chris@42: Chris@42: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@42: Chris@42: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@42: { Chris@42: INT m; Chris@42: for (i = 0, m = n2; m < n; ++i, m += 4) Chris@42: buf[i] = I[is * m]; Chris@42: for (; m < 2 * n; ++i, m += 4) Chris@42: buf[i] = -I[is * (2*n - m - 1)]; Chris@42: for (; m < 3 * n; ++i, m += 4) Chris@42: buf[i] = -I[is * (m - 2*n)]; Chris@42: for (; m < 4 * n; ++i, m += 4) Chris@42: buf[i] = I[is * (4*n - m - 1)]; Chris@42: m -= 4 * n; Chris@42: for (; i < n; ++i, m += 4) Chris@42: buf[i] = I[is * m]; Chris@42: } Chris@42: Chris@42: { /* child plan: R2HC of size n */ Chris@42: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@42: cld->apply((plan *) cld, buf, buf); Chris@42: } Chris@42: Chris@42: /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */ Chris@42: for (i = 0; i + i + 1 < n2; ++i) { Chris@42: INT k = i + i + 1; Chris@42: E c1, s1; Chris@42: E c2, s2; Chris@42: c1 = buf[k]; Chris@42: c2 = buf[k + 1]; Chris@42: s2 = buf[n - (k + 1)]; Chris@42: s1 = buf[n - k]; Chris@42: Chris@42: O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2) + Chris@42: SGN_SET(s1, i/2)); Chris@42: O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2) - Chris@42: SGN_SET(s1, (n-(i+1))/2)); Chris@42: Chris@42: O[os * (n2 - (i+1))] = SQRT2 * (SGN_SET(c2, (n2-i)/2) - Chris@42: SGN_SET(s2, (n2-(i+1))/2)); Chris@42: O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2) + Chris@42: SGN_SET(s2, (n2+(i+1))/2)); Chris@42: } Chris@42: if (i + i + 1 == n2) { Chris@42: E c, s; Chris@42: c = buf[n2]; Chris@42: s = buf[n - n2]; Chris@42: O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2) + Chris@42: SGN_SET(s, i/2)); Chris@42: O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2) + Chris@42: SGN_SET(s, (i+1)/2)); Chris@42: } Chris@42: O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2); Chris@42: } Chris@42: Chris@42: X(ifree)(buf); Chris@42: } Chris@42: Chris@42: /* like for rodft01, rodft11 is obtained from redft11 by Chris@42: reversing the input and flipping the sign of every other output. */ Chris@42: static void apply_ro11(const plan *ego_, R *I, R *O) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: INT is = ego->is, os = ego->os; Chris@42: INT i, n = ego->n, n2 = n/2; Chris@42: INT iv, vl = ego->vl; Chris@42: INT ivs = ego->ivs, ovs = ego->ovs; Chris@42: R *buf; Chris@42: Chris@42: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@42: Chris@42: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@42: { Chris@42: INT m; Chris@42: for (i = 0, m = n2; m < n; ++i, m += 4) Chris@42: buf[i] = I[is * (n - 1 - m)]; Chris@42: for (; m < 2 * n; ++i, m += 4) Chris@42: buf[i] = -I[is * (m - n)]; Chris@42: for (; m < 3 * n; ++i, m += 4) Chris@42: buf[i] = -I[is * (3*n - 1 - m)]; Chris@42: for (; m < 4 * n; ++i, m += 4) Chris@42: buf[i] = I[is * (m - 3*n)]; Chris@42: m -= 4 * n; Chris@42: for (; i < n; ++i, m += 4) Chris@42: buf[i] = I[is * (n - 1 - m)]; Chris@42: } Chris@42: Chris@42: { /* child plan: R2HC of size n */ Chris@42: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@42: cld->apply((plan *) cld, buf, buf); Chris@42: } Chris@42: Chris@42: /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */ Chris@42: for (i = 0; i + i + 1 < n2; ++i) { Chris@42: INT k = i + i + 1; Chris@42: INT j; Chris@42: E c1, s1; Chris@42: E c2, s2; Chris@42: c1 = buf[k]; Chris@42: c2 = buf[k + 1]; Chris@42: s2 = buf[n - (k + 1)]; Chris@42: s1 = buf[n - k]; Chris@42: Chris@42: O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2 + i) + Chris@42: SGN_SET(s1, i/2 + i)); Chris@42: O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2 + i) - Chris@42: SGN_SET(s1, (n-(i+1))/2 + i)); Chris@42: Chris@42: j = n2 - (i+1); Chris@42: O[os * j] = SQRT2 * (SGN_SET(c2, (n2-i)/2 + j) - Chris@42: SGN_SET(s2, (n2-(i+1))/2 + j)); Chris@42: O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2 + j) + Chris@42: SGN_SET(s2, (n2+(i+1))/2 + j)); Chris@42: } Chris@42: if (i + i + 1 == n2) { Chris@42: E c, s; Chris@42: c = buf[n2]; Chris@42: s = buf[n - n2]; Chris@42: O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2 + i) + Chris@42: SGN_SET(s, i/2 + i)); Chris@42: O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2 + i) + Chris@42: SGN_SET(s, (i+1)/2 + i)); Chris@42: } Chris@42: O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2 + n2); Chris@42: } Chris@42: Chris@42: X(ifree)(buf); Chris@42: } Chris@42: Chris@42: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@42: { Chris@42: P *ego = (P *) ego_; Chris@42: X(plan_awake)(ego->cld, wakefulness); Chris@42: } Chris@42: Chris@42: static void destroy(plan *ego_) Chris@42: { Chris@42: P *ego = (P *) ego_; Chris@42: X(plan_destroy_internal)(ego->cld); Chris@42: } Chris@42: Chris@42: static void print(const plan *ego_, printer *p) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: p->print(p, "(%se-r2hc-odd-%D%v%(%p%))", Chris@42: X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); Chris@42: } Chris@42: Chris@42: static int applicable0(const solver *ego_, const problem *p_) Chris@42: { Chris@42: const problem_rdft *p = (const problem_rdft *) p_; Chris@42: UNUSED(ego_); Chris@42: Chris@42: return (1 Chris@42: && p->sz->rnk == 1 Chris@42: && p->vecsz->rnk <= 1 Chris@42: && p->sz->dims[0].n % 2 == 1 Chris@42: && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) Chris@42: ); Chris@42: } Chris@42: Chris@42: static int applicable(const solver *ego, const problem *p, const planner *plnr) Chris@42: { Chris@42: return (!NO_SLOWP(plnr) && applicable0(ego, p)); Chris@42: } Chris@42: Chris@42: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@42: { Chris@42: P *pln; Chris@42: const problem_rdft *p; Chris@42: plan *cld; Chris@42: R *buf; Chris@42: INT n; Chris@42: opcnt ops; Chris@42: Chris@42: static const plan_adt padt = { Chris@42: X(rdft_solve), awake, print, destroy Chris@42: }; Chris@42: Chris@42: if (!applicable(ego_, p_, plnr)) Chris@42: return (plan *)0; Chris@42: Chris@42: p = (const problem_rdft *) p_; Chris@42: Chris@42: n = p->sz->dims[0].n; Chris@42: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@42: Chris@42: cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), Chris@42: X(mktensor_0d)(), Chris@42: buf, buf, R2HC)); Chris@42: X(ifree)(buf); Chris@42: if (!cld) Chris@42: return (plan *)0; Chris@42: Chris@42: pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); Chris@42: pln->n = n; Chris@42: pln->is = p->sz->dims[0].is; Chris@42: pln->os = p->sz->dims[0].os; Chris@42: pln->cld = cld; Chris@42: pln->kind = p->kind[0]; Chris@42: Chris@42: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); Chris@42: Chris@42: X(ops_zero)(&ops); Chris@42: ops.add = n - 1; Chris@42: ops.mul = n; Chris@42: ops.other = 4*n; Chris@42: Chris@42: X(ops_zero)(&pln->super.super.ops); Chris@42: X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); Chris@42: X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); Chris@42: Chris@42: return &(pln->super.super); Chris@42: } Chris@42: Chris@42: /* constructor */ Chris@42: static solver *mksolver(void) Chris@42: { Chris@42: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@42: S *slv = MKSOLVER(S, &sadt); Chris@42: return &(slv->super); Chris@42: } Chris@42: Chris@42: void X(reodft11e_r2hc_odd_register)(planner *p) Chris@42: { Chris@42: REGISTER_SOLVER(p, mksolver()); Chris@42: }