Chris@42: /* Chris@42: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@42: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@42: * Chris@42: * This program is free software; you can redistribute it and/or modify Chris@42: * it under the terms of the GNU General Public License as published by Chris@42: * the Free Software Foundation; either version 2 of the License, or Chris@42: * (at your option) any later version. Chris@42: * Chris@42: * This program is distributed in the hope that it will be useful, Chris@42: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@42: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@42: * GNU General Public License for more details. Chris@42: * Chris@42: * You should have received a copy of the GNU General Public License Chris@42: * along with this program; if not, write to the Free Software Chris@42: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@42: * Chris@42: */ Chris@42: Chris@42: Chris@42: /* Do a REDFT00 problem via an R2HC problem, with some pre/post-processing. Chris@42: Chris@42: This code uses the trick from FFTPACK, also documented in a similar Chris@42: form by Numerical Recipes. Unfortunately, this algorithm seems to Chris@42: have intrinsic numerical problems (similar to those in Chris@42: reodft11e-r2hc.c), possibly due to the fact that it multiplies its Chris@42: input by a cosine, causing a loss of precision near the zero. For Chris@42: transforms of 16k points, it has already lost three or four decimal Chris@42: places of accuracy, which we deem unacceptable. Chris@42: Chris@42: So, we have abandoned this algorithm in favor of the one in Chris@42: redft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed. Chris@42: The only other alternative in the literature that does not have Chris@42: similar numerical difficulties seems to be the direct adaptation of Chris@42: the Cooley-Tukey decomposition for symmetric data, but this would Chris@42: require a whole new set of codelets and it's not clear that it's Chris@42: worth it at this point. However, we did implement the latter Chris@42: algorithm for the specific case of odd n (logically adapting the Chris@42: split-radix algorithm); see reodft00e-splitradix.c. */ Chris@42: Chris@42: #include "reodft.h" Chris@42: Chris@42: typedef struct { Chris@42: solver super; Chris@42: } S; Chris@42: Chris@42: typedef struct { Chris@42: plan_rdft super; Chris@42: plan *cld; Chris@42: twid *td; Chris@42: INT is, os; Chris@42: INT n; Chris@42: INT vl; Chris@42: INT ivs, ovs; Chris@42: } P; Chris@42: Chris@42: static void apply(const plan *ego_, R *I, R *O) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: INT is = ego->is, os = ego->os; Chris@42: INT i, n = ego->n; Chris@42: INT iv, vl = ego->vl; Chris@42: INT ivs = ego->ivs, ovs = ego->ovs; Chris@42: R *W = ego->td->W; Chris@42: R *buf; Chris@42: E csum; Chris@42: Chris@42: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@42: Chris@42: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@42: buf[0] = I[0] + I[is * n]; Chris@42: csum = I[0] - I[is * n]; Chris@42: for (i = 1; i < n - i; ++i) { Chris@42: E a, b, apb, amb; Chris@42: a = I[is * i]; Chris@42: b = I[is * (n - i)]; Chris@42: csum += W[2*i] * (amb = K(2.0)*(a - b)); Chris@42: amb = W[2*i+1] * amb; Chris@42: apb = (a + b); Chris@42: buf[i] = apb - amb; Chris@42: buf[n - i] = apb + amb; Chris@42: } Chris@42: if (i == n - i) { Chris@42: buf[i] = K(2.0) * I[is * i]; Chris@42: } Chris@42: Chris@42: { Chris@42: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@42: cld->apply((plan *) cld, buf, buf); Chris@42: } Chris@42: Chris@42: /* FIXME: use recursive/cascade summation for better stability? */ Chris@42: O[0] = buf[0]; Chris@42: O[os] = csum; Chris@42: for (i = 1; i + i < n; ++i) { Chris@42: INT k = i + i; Chris@42: O[os * k] = buf[i]; Chris@42: O[os * (k + 1)] = O[os * (k - 1)] - buf[n - i]; Chris@42: } Chris@42: if (i + i == n) { Chris@42: O[os * n] = buf[i]; Chris@42: } Chris@42: } Chris@42: Chris@42: X(ifree)(buf); Chris@42: } Chris@42: Chris@42: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@42: { Chris@42: P *ego = (P *) ego_; Chris@42: static const tw_instr redft00e_tw[] = { Chris@42: { TW_COS, 0, 1 }, Chris@42: { TW_SIN, 0, 1 }, Chris@42: { TW_NEXT, 1, 0 } Chris@42: }; Chris@42: Chris@42: X(plan_awake)(ego->cld, wakefulness); Chris@42: X(twiddle_awake)(wakefulness, Chris@42: &ego->td, redft00e_tw, 2*ego->n, 1, (ego->n+1)/2); Chris@42: } Chris@42: Chris@42: static void destroy(plan *ego_) Chris@42: { Chris@42: P *ego = (P *) ego_; Chris@42: X(plan_destroy_internal)(ego->cld); Chris@42: } Chris@42: Chris@42: static void print(const plan *ego_, printer *p) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: p->print(p, "(redft00e-r2hc-%D%v%(%p%))", ego->n + 1, ego->vl, ego->cld); Chris@42: } Chris@42: Chris@42: static int applicable0(const solver *ego_, const problem *p_) Chris@42: { Chris@42: const problem_rdft *p = (const problem_rdft *) p_; Chris@42: UNUSED(ego_); Chris@42: Chris@42: return (1 Chris@42: && p->sz->rnk == 1 Chris@42: && p->vecsz->rnk <= 1 Chris@42: && p->kind[0] == REDFT00 Chris@42: && p->sz->dims[0].n > 1 /* n == 1 is not well-defined */ Chris@42: ); Chris@42: } Chris@42: Chris@42: static int applicable(const solver *ego, const problem *p, const planner *plnr) Chris@42: { Chris@42: return (!NO_SLOWP(plnr) && applicable0(ego, p)); Chris@42: } Chris@42: Chris@42: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@42: { Chris@42: P *pln; Chris@42: const problem_rdft *p; Chris@42: plan *cld; Chris@42: R *buf; Chris@42: INT n; Chris@42: opcnt ops; Chris@42: Chris@42: static const plan_adt padt = { Chris@42: X(rdft_solve), awake, print, destroy Chris@42: }; Chris@42: Chris@42: if (!applicable(ego_, p_, plnr)) Chris@42: return (plan *)0; Chris@42: Chris@42: p = (const problem_rdft *) p_; Chris@42: Chris@42: n = p->sz->dims[0].n - 1; Chris@42: A(n > 0); Chris@42: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@42: Chris@42: cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), Chris@42: X(mktensor_0d)(), Chris@42: buf, buf, R2HC)); Chris@42: X(ifree)(buf); Chris@42: if (!cld) Chris@42: return (plan *)0; Chris@42: Chris@42: pln = MKPLAN_RDFT(P, &padt, apply); Chris@42: Chris@42: pln->n = n; Chris@42: pln->is = p->sz->dims[0].is; Chris@42: pln->os = p->sz->dims[0].os; Chris@42: pln->cld = cld; Chris@42: pln->td = 0; Chris@42: Chris@42: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); Chris@42: Chris@42: X(ops_zero)(&ops); Chris@42: ops.other = 8 + (n-1)/2 * 11 + (1 - n % 2) * 5; Chris@42: ops.add = 2 + (n-1)/2 * 5; Chris@42: ops.mul = (n-1)/2 * 3 + (1 - n % 2) * 1; Chris@42: Chris@42: X(ops_zero)(&pln->super.super.ops); Chris@42: X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); Chris@42: X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); Chris@42: Chris@42: return &(pln->super.super); Chris@42: } Chris@42: Chris@42: /* constructor */ Chris@42: static solver *mksolver(void) Chris@42: { Chris@42: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@42: S *slv = MKSOLVER(S, &sadt); Chris@42: return &(slv->super); Chris@42: } Chris@42: Chris@42: void X(redft00e_r2hc_register)(planner *p) Chris@42: { Chris@42: REGISTER_SOLVER(p, mksolver()); Chris@42: }