Chris@82: /* Chris@82: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@82: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@82: * Chris@82: * This program is free software; you can redistribute it and/or modify Chris@82: * it under the terms of the GNU General Public License as published by Chris@82: * the Free Software Foundation; either version 2 of the License, or Chris@82: * (at your option) any later version. Chris@82: * Chris@82: * This program is distributed in the hope that it will be useful, Chris@82: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@82: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@82: * GNU General Public License for more details. Chris@82: * Chris@82: * You should have received a copy of the GNU General Public License Chris@82: * along with this program; if not, write to the Free Software Chris@82: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@82: * Chris@82: */ Chris@82: Chris@82: Chris@82: /* Do a RODFT00 problem via an R2HC problem, with some pre/post-processing. Chris@82: Chris@82: This code uses the trick from FFTPACK, also documented in a similar Chris@82: form by Numerical Recipes. Unfortunately, this algorithm seems to Chris@82: have intrinsic numerical problems (similar to those in Chris@82: reodft11e-r2hc.c), possibly due to the fact that it multiplies its Chris@82: input by a sine, causing a loss of precision near the zero. For Chris@82: transforms of 16k points, it has already lost three or four decimal Chris@82: places of accuracy, which we deem unacceptable. Chris@82: Chris@82: So, we have abandoned this algorithm in favor of the one in Chris@82: rodft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed. Chris@82: The only other alternative in the literature that does not have Chris@82: similar numerical difficulties seems to be the direct adaptation of Chris@82: the Cooley-Tukey decomposition for antisymmetric data, but this Chris@82: would require a whole new set of codelets and it's not clear that Chris@82: it's worth it at this point. However, we did implement the latter Chris@82: algorithm for the specific case of odd n (logically adapting the Chris@82: split-radix algorithm); see reodft00e-splitradix.c. */ Chris@82: Chris@82: #include "reodft/reodft.h" Chris@82: Chris@82: typedef struct { Chris@82: solver super; Chris@82: } S; Chris@82: Chris@82: typedef struct { Chris@82: plan_rdft super; Chris@82: plan *cld; Chris@82: twid *td; Chris@82: INT is, os; Chris@82: INT n; Chris@82: INT vl; Chris@82: INT ivs, ovs; Chris@82: } P; Chris@82: Chris@82: static void apply(const plan *ego_, R *I, R *O) Chris@82: { Chris@82: const P *ego = (const P *) ego_; Chris@82: INT is = ego->is, os = ego->os; Chris@82: INT i, n = ego->n; Chris@82: INT iv, vl = ego->vl; Chris@82: INT ivs = ego->ivs, ovs = ego->ovs; Chris@82: R *W = ego->td->W; Chris@82: R *buf; Chris@82: Chris@82: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@82: Chris@82: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@82: buf[0] = 0; Chris@82: for (i = 1; i < n - i; ++i) { Chris@82: E a, b, apb, amb; Chris@82: a = I[is * (i - 1)]; Chris@82: b = I[is * ((n - i) - 1)]; Chris@82: apb = K(2.0) * W[i] * (a + b); Chris@82: amb = (a - b); Chris@82: buf[i] = apb + amb; Chris@82: buf[n - i] = apb - amb; Chris@82: } Chris@82: if (i == n - i) { Chris@82: buf[i] = K(4.0) * I[is * (i - 1)]; Chris@82: } Chris@82: Chris@82: { Chris@82: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@82: cld->apply((plan *) cld, buf, buf); Chris@82: } Chris@82: Chris@82: /* FIXME: use recursive/cascade summation for better stability? */ Chris@82: O[0] = buf[0] * 0.5; Chris@82: for (i = 1; i + i < n - 1; ++i) { Chris@82: INT k = i + i; Chris@82: O[os * (k - 1)] = -buf[n - i]; Chris@82: O[os * k] = O[os * (k - 2)] + buf[i]; Chris@82: } Chris@82: if (i + i == n - 1) { Chris@82: O[os * (n - 2)] = -buf[n - i]; Chris@82: } Chris@82: } Chris@82: Chris@82: X(ifree)(buf); Chris@82: } Chris@82: Chris@82: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@82: { Chris@82: P *ego = (P *) ego_; Chris@82: static const tw_instr rodft00e_tw[] = { Chris@82: { TW_SIN, 0, 1 }, Chris@82: { TW_NEXT, 1, 0 } Chris@82: }; Chris@82: Chris@82: X(plan_awake)(ego->cld, wakefulness); Chris@82: Chris@82: X(twiddle_awake)(wakefulness, Chris@82: &ego->td, rodft00e_tw, 2*ego->n, 1, (ego->n+1)/2); Chris@82: } Chris@82: Chris@82: static void destroy(plan *ego_) Chris@82: { Chris@82: P *ego = (P *) ego_; Chris@82: X(plan_destroy_internal)(ego->cld); Chris@82: } Chris@82: Chris@82: static void print(const plan *ego_, printer *p) Chris@82: { Chris@82: const P *ego = (const P *) ego_; Chris@82: p->print(p, "(rodft00e-r2hc-%D%v%(%p%))", ego->n - 1, ego->vl, ego->cld); Chris@82: } Chris@82: Chris@82: static int applicable0(const solver *ego_, const problem *p_) Chris@82: { Chris@82: const problem_rdft *p = (const problem_rdft *) p_; Chris@82: UNUSED(ego_); Chris@82: Chris@82: return (1 Chris@82: && p->sz->rnk == 1 Chris@82: && p->vecsz->rnk <= 1 Chris@82: && p->kind[0] == RODFT00 Chris@82: ); Chris@82: } Chris@82: Chris@82: static int applicable(const solver *ego, const problem *p, const planner *plnr) Chris@82: { Chris@82: return (!NO_SLOWP(plnr) && applicable0(ego, p)); Chris@82: } Chris@82: Chris@82: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@82: { Chris@82: P *pln; Chris@82: const problem_rdft *p; Chris@82: plan *cld; Chris@82: R *buf; Chris@82: INT n; Chris@82: opcnt ops; Chris@82: Chris@82: static const plan_adt padt = { Chris@82: X(rdft_solve), awake, print, destroy Chris@82: }; Chris@82: Chris@82: if (!applicable(ego_, p_, plnr)) Chris@82: return (plan *)0; Chris@82: Chris@82: p = (const problem_rdft *) p_; Chris@82: Chris@82: n = p->sz->dims[0].n + 1; Chris@82: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@82: Chris@82: cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), Chris@82: X(mktensor_0d)(), Chris@82: buf, buf, R2HC)); Chris@82: X(ifree)(buf); Chris@82: if (!cld) Chris@82: return (plan *)0; Chris@82: Chris@82: pln = MKPLAN_RDFT(P, &padt, apply); Chris@82: Chris@82: pln->n = n; Chris@82: pln->is = p->sz->dims[0].is; Chris@82: pln->os = p->sz->dims[0].os; Chris@82: pln->cld = cld; Chris@82: pln->td = 0; Chris@82: Chris@82: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); Chris@82: Chris@82: X(ops_zero)(&ops); Chris@82: ops.other = 4 + (n-1)/2 * 5 + (n-2)/2 * 5; Chris@82: ops.add = (n-1)/2 * 4 + (n-2)/2 * 1; Chris@82: ops.mul = 1 + (n-1)/2 * 2; Chris@82: if (n % 2 == 0) Chris@82: ops.mul += 1; Chris@82: Chris@82: X(ops_zero)(&pln->super.super.ops); Chris@82: X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); Chris@82: X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); Chris@82: Chris@82: return &(pln->super.super); Chris@82: } Chris@82: Chris@82: /* constructor */ Chris@82: static solver *mksolver(void) Chris@82: { Chris@82: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@82: S *slv = MKSOLVER(S, &sadt); Chris@82: return &(slv->super); Chris@82: } Chris@82: Chris@82: void X(rodft00e_r2hc_register)(planner *p) Chris@82: { Chris@82: REGISTER_SOLVER(p, mksolver()); Chris@82: }