Chris@82: /* Chris@82: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@82: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@82: * Chris@82: * This program is free software; you can redistribute it and/or modify Chris@82: * it under the terms of the GNU General Public License as published by Chris@82: * the Free Software Foundation; either version 2 of the License, or Chris@82: * (at your option) any later version. Chris@82: * Chris@82: * This program is distributed in the hope that it will be useful, Chris@82: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@82: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@82: * GNU General Public License for more details. Chris@82: * Chris@82: * You should have received a copy of the GNU General Public License Chris@82: * along with this program; if not, write to the Free Software Chris@82: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@82: * Chris@82: */ Chris@82: Chris@82: /* This file was automatically generated --- DO NOT EDIT */ Chris@82: /* Generated on Thu May 24 08:07:54 EDT 2018 */ Chris@82: Chris@82: #include "rdft/codelet-rdft.h" Chris@82: Chris@82: #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) Chris@82: Chris@82: /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include rdft/scalar/hc2cb.h */ Chris@82: Chris@82: /* Chris@82: * This function contains 74 FP additions, 50 FP multiplications, Chris@82: * (or, 44 additions, 20 multiplications, 30 fused multiply/add), Chris@82: * 47 stack variables, 1 constants, and 32 memory accesses Chris@82: */ Chris@82: #include "rdft/scalar/hc2cb.h" Chris@82: Chris@82: static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) Chris@82: { Chris@82: DK(KP707106781, +0.707106781186547524400844362104849039284835938); Chris@82: { Chris@82: INT m; Chris@82: for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { Chris@82: E Tf, Tg, Tl, Tp, Ti, Tj, Tk, T1b, T1u, T1e, T1o, To, Tq, TK; Chris@82: { Chris@82: E Th, T1n, T1t, Tn, Tm, TJ; Chris@82: Tf = W[0]; Chris@82: Tg = W[2]; Chris@82: Th = Tf * Tg; Chris@82: Tl = W[4]; Chris@82: T1n = Tf * Tl; Chris@82: Tp = W[5]; Chris@82: T1t = Tf * Tp; Chris@82: Ti = W[1]; Chris@82: Tj = W[3]; Chris@82: Tn = Tf * Tj; Chris@82: Tk = FMA(Ti, Tj, Th); Chris@82: T1b = FNMS(Ti, Tj, Th); Chris@82: T1u = FNMS(Ti, Tl, T1t); Chris@82: T1e = FMA(Ti, Tg, Tn); Chris@82: T1o = FMA(Ti, Tp, T1n); Chris@82: Tm = Tk * Tl; Chris@82: TJ = Tk * Tp; Chris@82: To = FNMS(Ti, Tg, Tn); Chris@82: Tq = FMA(To, Tp, Tm); Chris@82: TK = FNMS(To, Tl, TJ); Chris@82: } Chris@82: { Chris@82: E T7, T1p, T1v, Tv, TP, T13, T1h, TZ, Te, T1k, T1w, T1q, TQ, TR, T10; Chris@82: E TG, T14; Chris@82: { Chris@82: E T3, Tr, TO, T1f, T6, TL, Tu, T1g; Chris@82: { Chris@82: E T1, T2, TM, TN; Chris@82: T1 = Rp[0]; Chris@82: T2 = Rm[WS(rs, 3)]; Chris@82: T3 = T1 + T2; Chris@82: Tr = T1 - T2; Chris@82: TM = Ip[0]; Chris@82: TN = Im[WS(rs, 3)]; Chris@82: TO = TM + TN; Chris@82: T1f = TM - TN; Chris@82: } Chris@82: { Chris@82: E T4, T5, Ts, Tt; Chris@82: T4 = Rp[WS(rs, 2)]; Chris@82: T5 = Rm[WS(rs, 1)]; Chris@82: T6 = T4 + T5; Chris@82: TL = T4 - T5; Chris@82: Ts = Ip[WS(rs, 2)]; Chris@82: Tt = Im[WS(rs, 1)]; Chris@82: Tu = Ts + Tt; Chris@82: T1g = Ts - Tt; Chris@82: } Chris@82: T7 = T3 + T6; Chris@82: T1p = T3 - T6; Chris@82: T1v = T1f - T1g; Chris@82: Tv = Tr - Tu; Chris@82: TP = TL + TO; Chris@82: T13 = TO - TL; Chris@82: T1h = T1f + T1g; Chris@82: TZ = Tr + Tu; Chris@82: } Chris@82: { Chris@82: E Ta, Tw, Tz, T1i, Td, TB, TE, T1j, TA, TF; Chris@82: { Chris@82: E T8, T9, Tx, Ty; Chris@82: T8 = Rp[WS(rs, 1)]; Chris@82: T9 = Rm[WS(rs, 2)]; Chris@82: Ta = T8 + T9; Chris@82: Tw = T8 - T9; Chris@82: Tx = Ip[WS(rs, 1)]; Chris@82: Ty = Im[WS(rs, 2)]; Chris@82: Tz = Tx + Ty; Chris@82: T1i = Tx - Ty; Chris@82: } Chris@82: { Chris@82: E Tb, Tc, TC, TD; Chris@82: Tb = Rm[0]; Chris@82: Tc = Rp[WS(rs, 3)]; Chris@82: Td = Tb + Tc; Chris@82: TB = Tb - Tc; Chris@82: TC = Ip[WS(rs, 3)]; Chris@82: TD = Im[0]; Chris@82: TE = TC + TD; Chris@82: T1j = TC - TD; Chris@82: } Chris@82: Te = Ta + Td; Chris@82: T1k = T1i + T1j; Chris@82: T1w = Ta - Td; Chris@82: T1q = T1j - T1i; Chris@82: TQ = Tw + Tz; Chris@82: TR = TB + TE; Chris@82: T10 = TQ + TR; Chris@82: TA = Tw - Tz; Chris@82: TF = TB - TE; Chris@82: TG = TA + TF; Chris@82: T14 = TA - TF; Chris@82: } Chris@82: Rp[0] = T7 + Te; Chris@82: Rm[0] = T1h + T1k; Chris@82: { Chris@82: E T11, T12, T15, T16; Chris@82: T11 = FNMS(KP707106781, T10, TZ); Chris@82: T12 = Tg * T11; Chris@82: T15 = FMA(KP707106781, T14, T13); Chris@82: T16 = Tg * T15; Chris@82: Ip[WS(rs, 1)] = FNMS(Tj, T15, T12); Chris@82: Im[WS(rs, 1)] = FMA(Tj, T11, T16); Chris@82: } Chris@82: { Chris@82: E T1z, T1A, T1B, T1C; Chris@82: T1z = T1p + T1q; Chris@82: T1A = Tk * T1z; Chris@82: T1B = T1w + T1v; Chris@82: T1C = Tk * T1B; Chris@82: Rp[WS(rs, 1)] = FNMS(To, T1B, T1A); Chris@82: Rm[WS(rs, 1)] = FMA(To, T1z, T1C); Chris@82: } Chris@82: { Chris@82: E T17, T18, T19, T1a; Chris@82: T17 = FMA(KP707106781, T10, TZ); Chris@82: T18 = Tl * T17; Chris@82: T19 = FNMS(KP707106781, T14, T13); Chris@82: T1a = Tl * T19; Chris@82: Ip[WS(rs, 3)] = FNMS(Tp, T19, T18); Chris@82: Im[WS(rs, 3)] = FMA(Tp, T17, T1a); Chris@82: } Chris@82: { Chris@82: E T1l, T1d, T1m, T1c; Chris@82: T1l = T1h - T1k; Chris@82: T1c = T7 - Te; Chris@82: T1d = T1b * T1c; Chris@82: T1m = T1e * T1c; Chris@82: Rp[WS(rs, 2)] = FNMS(T1e, T1l, T1d); Chris@82: Rm[WS(rs, 2)] = FMA(T1b, T1l, T1m); Chris@82: } Chris@82: { Chris@82: E T1r, T1s, T1x, T1y; Chris@82: T1r = T1p - T1q; Chris@82: T1s = T1o * T1r; Chris@82: T1x = T1v - T1w; Chris@82: T1y = T1o * T1x; Chris@82: Rp[WS(rs, 3)] = FNMS(T1u, T1x, T1s); Chris@82: Rm[WS(rs, 3)] = FMA(T1u, T1r, T1y); Chris@82: } Chris@82: { Chris@82: E TT, TX, TW, TY, TI, TU, TS, TV, TH; Chris@82: TS = TQ - TR; Chris@82: TT = FNMS(KP707106781, TS, TP); Chris@82: TX = FMA(KP707106781, TS, TP); Chris@82: TV = FMA(KP707106781, TG, Tv); Chris@82: TW = Tf * TV; Chris@82: TY = Ti * TV; Chris@82: TH = FNMS(KP707106781, TG, Tv); Chris@82: TI = Tq * TH; Chris@82: TU = TK * TH; Chris@82: Ip[WS(rs, 2)] = FNMS(TK, TT, TI); Chris@82: Im[WS(rs, 2)] = FMA(Tq, TT, TU); Chris@82: Ip[0] = FNMS(Ti, TX, TW); Chris@82: Im[0] = FMA(Tf, TX, TY); Chris@82: } Chris@82: } Chris@82: } Chris@82: } Chris@82: } Chris@82: Chris@82: static const tw_instr twinstr[] = { Chris@82: {TW_CEXP, 1, 1}, Chris@82: {TW_CEXP, 1, 3}, Chris@82: {TW_CEXP, 1, 7}, Chris@82: {TW_NEXT, 1, 0} Chris@82: }; Chris@82: Chris@82: static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {44, 20, 30, 0} }; Chris@82: Chris@82: void X(codelet_hc2cb2_8) (planner *p) { Chris@82: X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT); Chris@82: } Chris@82: #else Chris@82: Chris@82: /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include rdft/scalar/hc2cb.h */ Chris@82: Chris@82: /* Chris@82: * This function contains 74 FP additions, 44 FP multiplications, Chris@82: * (or, 56 additions, 26 multiplications, 18 fused multiply/add), Chris@82: * 46 stack variables, 1 constants, and 32 memory accesses Chris@82: */ Chris@82: #include "rdft/scalar/hc2cb.h" Chris@82: Chris@82: static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) Chris@82: { Chris@82: DK(KP707106781, +0.707106781186547524400844362104849039284835938); Chris@82: { Chris@82: INT m; Chris@82: for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { Chris@82: E Tf, Ti, Tg, Tj, Tl, Tp, TP, TR, TF, TG, TH, T15, TL, TT; Chris@82: { Chris@82: E Th, To, Tk, Tn; Chris@82: Tf = W[0]; Chris@82: Ti = W[1]; Chris@82: Tg = W[2]; Chris@82: Tj = W[3]; Chris@82: Th = Tf * Tg; Chris@82: To = Ti * Tg; Chris@82: Tk = Ti * Tj; Chris@82: Tn = Tf * Tj; Chris@82: Tl = Th - Tk; Chris@82: Tp = Tn + To; Chris@82: TP = Th + Tk; Chris@82: TR = Tn - To; Chris@82: TF = W[4]; Chris@82: TG = W[5]; Chris@82: TH = FMA(Tf, TF, Ti * TG); Chris@82: T15 = FNMS(TR, TF, TP * TG); Chris@82: TL = FNMS(Ti, TF, Tf * TG); Chris@82: TT = FMA(TP, TF, TR * TG); Chris@82: } Chris@82: { Chris@82: E T7, T1f, T1i, Tw, TI, TW, T18, TM, Te, T19, T1a, TD, TJ, TZ, T12; Chris@82: E TN, Tm, TE; Chris@82: { Chris@82: E T3, TU, Ts, T17, T6, T16, Tv, TV; Chris@82: { Chris@82: E T1, T2, Tq, Tr; Chris@82: T1 = Rp[0]; Chris@82: T2 = Rm[WS(rs, 3)]; Chris@82: T3 = T1 + T2; Chris@82: TU = T1 - T2; Chris@82: Tq = Ip[0]; Chris@82: Tr = Im[WS(rs, 3)]; Chris@82: Ts = Tq - Tr; Chris@82: T17 = Tq + Tr; Chris@82: } Chris@82: { Chris@82: E T4, T5, Tt, Tu; Chris@82: T4 = Rp[WS(rs, 2)]; Chris@82: T5 = Rm[WS(rs, 1)]; Chris@82: T6 = T4 + T5; Chris@82: T16 = T4 - T5; Chris@82: Tt = Ip[WS(rs, 2)]; Chris@82: Tu = Im[WS(rs, 1)]; Chris@82: Tv = Tt - Tu; Chris@82: TV = Tt + Tu; Chris@82: } Chris@82: T7 = T3 + T6; Chris@82: T1f = TU + TV; Chris@82: T1i = T17 - T16; Chris@82: Tw = Ts + Tv; Chris@82: TI = T3 - T6; Chris@82: TW = TU - TV; Chris@82: T18 = T16 + T17; Chris@82: TM = Ts - Tv; Chris@82: } Chris@82: { Chris@82: E Ta, TX, Tz, TY, Td, T10, TC, T11; Chris@82: { Chris@82: E T8, T9, Tx, Ty; Chris@82: T8 = Rp[WS(rs, 1)]; Chris@82: T9 = Rm[WS(rs, 2)]; Chris@82: Ta = T8 + T9; Chris@82: TX = T8 - T9; Chris@82: Tx = Ip[WS(rs, 1)]; Chris@82: Ty = Im[WS(rs, 2)]; Chris@82: Tz = Tx - Ty; Chris@82: TY = Tx + Ty; Chris@82: } Chris@82: { Chris@82: E Tb, Tc, TA, TB; Chris@82: Tb = Rm[0]; Chris@82: Tc = Rp[WS(rs, 3)]; Chris@82: Td = Tb + Tc; Chris@82: T10 = Tb - Tc; Chris@82: TA = Ip[WS(rs, 3)]; Chris@82: TB = Im[0]; Chris@82: TC = TA - TB; Chris@82: T11 = TA + TB; Chris@82: } Chris@82: Te = Ta + Td; Chris@82: T19 = TX + TY; Chris@82: T1a = T10 + T11; Chris@82: TD = Tz + TC; Chris@82: TJ = TC - Tz; Chris@82: TZ = TX - TY; Chris@82: T12 = T10 - T11; Chris@82: TN = Ta - Td; Chris@82: } Chris@82: Rp[0] = T7 + Te; Chris@82: Rm[0] = Tw + TD; Chris@82: Tm = T7 - Te; Chris@82: TE = Tw - TD; Chris@82: Rp[WS(rs, 2)] = FNMS(Tp, TE, Tl * Tm); Chris@82: Rm[WS(rs, 2)] = FMA(Tp, Tm, Tl * TE); Chris@82: { Chris@82: E TQ, TS, TK, TO; Chris@82: TQ = TI + TJ; Chris@82: TS = TN + TM; Chris@82: Rp[WS(rs, 1)] = FNMS(TR, TS, TP * TQ); Chris@82: Rm[WS(rs, 1)] = FMA(TP, TS, TR * TQ); Chris@82: TK = TI - TJ; Chris@82: TO = TM - TN; Chris@82: Rp[WS(rs, 3)] = FNMS(TL, TO, TH * TK); Chris@82: Rm[WS(rs, 3)] = FMA(TH, TO, TL * TK); Chris@82: } Chris@82: { Chris@82: E T1h, T1l, T1k, T1m, T1g, T1j; Chris@82: T1g = KP707106781 * (T19 + T1a); Chris@82: T1h = T1f - T1g; Chris@82: T1l = T1f + T1g; Chris@82: T1j = KP707106781 * (TZ - T12); Chris@82: T1k = T1i + T1j; Chris@82: T1m = T1i - T1j; Chris@82: Ip[WS(rs, 1)] = FNMS(Tj, T1k, Tg * T1h); Chris@82: Im[WS(rs, 1)] = FMA(Tg, T1k, Tj * T1h); Chris@82: Ip[WS(rs, 3)] = FNMS(TG, T1m, TF * T1l); Chris@82: Im[WS(rs, 3)] = FMA(TF, T1m, TG * T1l); Chris@82: } Chris@82: { Chris@82: E T14, T1d, T1c, T1e, T13, T1b; Chris@82: T13 = KP707106781 * (TZ + T12); Chris@82: T14 = TW - T13; Chris@82: T1d = TW + T13; Chris@82: T1b = KP707106781 * (T19 - T1a); Chris@82: T1c = T18 - T1b; Chris@82: T1e = T18 + T1b; Chris@82: Ip[WS(rs, 2)] = FNMS(T15, T1c, TT * T14); Chris@82: Im[WS(rs, 2)] = FMA(T15, T14, TT * T1c); Chris@82: Ip[0] = FNMS(Ti, T1e, Tf * T1d); Chris@82: Im[0] = FMA(Ti, T1d, Tf * T1e); Chris@82: } Chris@82: } Chris@82: } Chris@82: } Chris@82: } Chris@82: Chris@82: static const tw_instr twinstr[] = { Chris@82: {TW_CEXP, 1, 1}, Chris@82: {TW_CEXP, 1, 3}, Chris@82: {TW_CEXP, 1, 7}, Chris@82: {TW_NEXT, 1, 0} Chris@82: }; Chris@82: Chris@82: static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {56, 26, 18, 0} }; Chris@82: Chris@82: void X(codelet_hc2cb2_8) (planner *p) { Chris@82: X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT); Chris@82: } Chris@82: #endif