Chris@82: /* Chris@82: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@82: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@82: * Chris@82: * This program is free software; you can redistribute it and/or modify Chris@82: * it under the terms of the GNU General Public License as published by Chris@82: * the Free Software Foundation; either version 2 of the License, or Chris@82: * (at your option) any later version. Chris@82: * Chris@82: * This program is distributed in the hope that it will be useful, Chris@82: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@82: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@82: * GNU General Public License for more details. Chris@82: * Chris@82: * You should have received a copy of the GNU General Public License Chris@82: * along with this program; if not, write to the Free Software Chris@82: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@82: * Chris@82: */ Chris@82: Chris@82: Chris@82: /* Compute the complex DFT by combining R2HC RDFTs on the real Chris@82: and imaginary parts. This could be useful for people just wanting Chris@82: to link to the real codelets and not the complex ones. It could Chris@82: also even be faster than the complex algorithms for split (as opposed Chris@82: to interleaved) real/imag complex data. */ Chris@82: Chris@82: #include "rdft/rdft.h" Chris@82: #include "dft/dft.h" Chris@82: Chris@82: typedef struct { Chris@82: solver super; Chris@82: } S; Chris@82: Chris@82: typedef struct { Chris@82: plan_dft super; Chris@82: plan *cld; Chris@82: INT ishift, oshift; Chris@82: INT os; Chris@82: INT n; Chris@82: } P; Chris@82: Chris@82: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) Chris@82: { Chris@82: const P *ego = (const P *) ego_; Chris@82: INT n; Chris@82: Chris@82: UNUSED(ii); Chris@82: Chris@82: { /* transform vector of real & imag parts: */ Chris@82: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@82: cld->apply((plan *) cld, ri + ego->ishift, ro + ego->oshift); Chris@82: } Chris@82: Chris@82: n = ego->n; Chris@82: if (n > 1) { Chris@82: INT i, os = ego->os; Chris@82: for (i = 1; i < (n + 1)/2; ++i) { Chris@82: E rop, iop, iom, rom; Chris@82: rop = ro[os * i]; Chris@82: iop = io[os * i]; Chris@82: rom = ro[os * (n - i)]; Chris@82: iom = io[os * (n - i)]; Chris@82: ro[os * i] = rop - iom; Chris@82: io[os * i] = iop + rom; Chris@82: ro[os * (n - i)] = rop + iom; Chris@82: io[os * (n - i)] = iop - rom; Chris@82: } Chris@82: } Chris@82: } Chris@82: Chris@82: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@82: { Chris@82: P *ego = (P *) ego_; Chris@82: X(plan_awake)(ego->cld, wakefulness); Chris@82: } Chris@82: Chris@82: static void destroy(plan *ego_) Chris@82: { Chris@82: P *ego = (P *) ego_; Chris@82: X(plan_destroy_internal)(ego->cld); Chris@82: } Chris@82: Chris@82: static void print(const plan *ego_, printer *p) Chris@82: { Chris@82: const P *ego = (const P *) ego_; Chris@82: p->print(p, "(dft-r2hc-%D%(%p%))", ego->n, ego->cld); Chris@82: } Chris@82: Chris@82: Chris@82: static int applicable0(const problem *p_) Chris@82: { Chris@82: const problem_dft *p = (const problem_dft *) p_; Chris@82: return ((p->sz->rnk == 1 && p->vecsz->rnk == 0) Chris@82: || (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk)) Chris@82: ); Chris@82: } Chris@82: Chris@82: static int splitp(R *r, R *i, INT n, INT s) Chris@82: { Chris@82: return ((r > i ? (r - i) : (i - r)) >= n * (s > 0 ? s : 0-s)); Chris@82: } Chris@82: Chris@82: static int applicable(const problem *p_, const planner *plnr) Chris@82: { Chris@82: if (!applicable0(p_)) return 0; Chris@82: Chris@82: { Chris@82: const problem_dft *p = (const problem_dft *) p_; Chris@82: Chris@82: /* rank-0 problems are always OK */ Chris@82: if (p->sz->rnk == 0) return 1; Chris@82: Chris@82: /* this solver is ok for split arrays */ Chris@82: if (p->sz->rnk == 1 && Chris@82: splitp(p->ri, p->ii, p->sz->dims[0].n, p->sz->dims[0].is) && Chris@82: splitp(p->ro, p->io, p->sz->dims[0].n, p->sz->dims[0].os)) Chris@82: return 1; Chris@82: Chris@82: return !(NO_DFT_R2HCP(plnr)); Chris@82: } Chris@82: } Chris@82: Chris@82: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@82: { Chris@82: P *pln; Chris@82: const problem_dft *p; Chris@82: plan *cld; Chris@82: INT ishift = 0, oshift = 0; Chris@82: Chris@82: static const plan_adt padt = { Chris@82: X(dft_solve), awake, print, destroy Chris@82: }; Chris@82: Chris@82: UNUSED(ego_); Chris@82: if (!applicable(p_, plnr)) Chris@82: return (plan *)0; Chris@82: Chris@82: p = (const problem_dft *) p_; Chris@82: Chris@82: { Chris@82: tensor *ri_vec = X(mktensor_1d)(2, p->ii - p->ri, p->io - p->ro); Chris@82: tensor *cld_vec = X(tensor_append)(ri_vec, p->vecsz); Chris@82: int i; Chris@82: for (i = 0; i < cld_vec->rnk; ++i) { /* make all istrides > 0 */ Chris@82: if (cld_vec->dims[i].is < 0) { Chris@82: INT nm1 = cld_vec->dims[i].n - 1; Chris@82: ishift -= nm1 * (cld_vec->dims[i].is *= -1); Chris@82: oshift -= nm1 * (cld_vec->dims[i].os *= -1); Chris@82: } Chris@82: } Chris@82: cld = X(mkplan_d)(plnr, Chris@82: X(mkproblem_rdft_1)(p->sz, cld_vec, Chris@82: p->ri + ishift, Chris@82: p->ro + oshift, R2HC)); Chris@82: X(tensor_destroy2)(ri_vec, cld_vec); Chris@82: } Chris@82: if (!cld) return (plan *)0; Chris@82: Chris@82: pln = MKPLAN_DFT(P, &padt, apply); Chris@82: Chris@82: if (p->sz->rnk == 0) { Chris@82: pln->n = 1; Chris@82: pln->os = 0; Chris@82: } Chris@82: else { Chris@82: pln->n = p->sz->dims[0].n; Chris@82: pln->os = p->sz->dims[0].os; Chris@82: } Chris@82: pln->ishift = ishift; Chris@82: pln->oshift = oshift; Chris@82: Chris@82: pln->cld = cld; Chris@82: Chris@82: pln->super.super.ops = cld->ops; Chris@82: pln->super.super.ops.other += 8 * ((pln->n - 1)/2); Chris@82: pln->super.super.ops.add += 4 * ((pln->n - 1)/2); Chris@82: pln->super.super.ops.other += 1; /* estimator hack for nop plans */ Chris@82: Chris@82: return &(pln->super.super); Chris@82: } Chris@82: Chris@82: /* constructor */ Chris@82: static solver *mksolver(void) Chris@82: { Chris@82: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; Chris@82: S *slv = MKSOLVER(S, &sadt); Chris@82: return &(slv->super); Chris@82: } Chris@82: Chris@82: void X(dft_r2hc_register)(planner *p) Chris@82: { Chris@82: REGISTER_SOLVER(p, mksolver()); Chris@82: }