Chris@82: /* Chris@82: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@82: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@82: * Chris@82: * This program is free software; you can redistribute it and/or modify Chris@82: * it under the terms of the GNU General Public License as published by Chris@82: * the Free Software Foundation; either version 2 of the License, or Chris@82: * (at your option) any later version. Chris@82: * Chris@82: * This program is distributed in the hope that it will be useful, Chris@82: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@82: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@82: * GNU General Public License for more details. Chris@82: * Chris@82: * You should have received a copy of the GNU General Public License Chris@82: * along with this program; if not, write to the Free Software Chris@82: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@82: * Chris@82: */ Chris@82: Chris@82: #include "dft/dft.h" Chris@82: Chris@82: typedef struct { Chris@82: solver super; Chris@82: } S; Chris@82: Chris@82: typedef struct { Chris@82: plan_dft super; Chris@82: INT n; /* problem size */ Chris@82: INT nb; /* size of convolution */ Chris@82: R *w; /* lambda k . exp(2*pi*i*k^2/(2*n)) */ Chris@82: R *W; /* DFT(w) */ Chris@82: plan *cldf; Chris@82: INT is, os; Chris@82: } P; Chris@82: Chris@82: static void bluestein_sequence(enum wakefulness wakefulness, INT n, R *w) Chris@82: { Chris@82: INT k, ksq, n2 = 2 * n; Chris@82: triggen *t = X(mktriggen)(wakefulness, n2); Chris@82: Chris@82: ksq = 0; Chris@82: for (k = 0; k < n; ++k) { Chris@82: t->cexp(t, ksq, w+2*k); Chris@82: /* careful with overflow */ Chris@82: ksq += 2*k + 1; while (ksq > n2) ksq -= n2; Chris@82: } Chris@82: Chris@82: X(triggen_destroy)(t); Chris@82: } Chris@82: Chris@82: static void mktwiddle(enum wakefulness wakefulness, P *p) Chris@82: { Chris@82: INT i; Chris@82: INT n = p->n, nb = p->nb; Chris@82: R *w, *W; Chris@82: E nbf = (E)nb; Chris@82: Chris@82: p->w = w = (R *) MALLOC(2 * n * sizeof(R), TWIDDLES); Chris@82: p->W = W = (R *) MALLOC(2 * nb * sizeof(R), TWIDDLES); Chris@82: Chris@82: bluestein_sequence(wakefulness, n, w); Chris@82: Chris@82: for (i = 0; i < nb; ++i) Chris@82: W[2*i] = W[2*i+1] = K(0.0); Chris@82: Chris@82: W[0] = w[0] / nbf; Chris@82: W[1] = w[1] / nbf; Chris@82: Chris@82: for (i = 1; i < n; ++i) { Chris@82: W[2*i] = W[2*(nb-i)] = w[2*i] / nbf; Chris@82: W[2*i+1] = W[2*(nb-i)+1] = w[2*i+1] / nbf; Chris@82: } Chris@82: Chris@82: { Chris@82: plan_dft *cldf = (plan_dft *)p->cldf; Chris@82: /* cldf must be awake */ Chris@82: cldf->apply(p->cldf, W, W+1, W, W+1); Chris@82: } Chris@82: } Chris@82: Chris@82: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) Chris@82: { Chris@82: const P *ego = (const P *) ego_; Chris@82: INT i, n = ego->n, nb = ego->nb, is = ego->is, os = ego->os; Chris@82: R *w = ego->w, *W = ego->W; Chris@82: R *b = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS); Chris@82: Chris@82: /* multiply input by conjugate bluestein sequence */ Chris@82: for (i = 0; i < n; ++i) { Chris@82: E xr = ri[i*is], xi = ii[i*is]; Chris@82: E wr = w[2*i], wi = w[2*i+1]; Chris@82: b[2*i] = xr * wr + xi * wi; Chris@82: b[2*i+1] = xi * wr - xr * wi; Chris@82: } Chris@82: Chris@82: for (; i < nb; ++i) b[2*i] = b[2*i+1] = K(0.0); Chris@82: Chris@82: /* convolution: FFT */ Chris@82: { Chris@82: plan_dft *cldf = (plan_dft *)ego->cldf; Chris@82: cldf->apply(ego->cldf, b, b+1, b, b+1); Chris@82: } Chris@82: Chris@82: /* convolution: pointwise multiplication */ Chris@82: for (i = 0; i < nb; ++i) { Chris@82: E xr = b[2*i], xi = b[2*i+1]; Chris@82: E wr = W[2*i], wi = W[2*i+1]; Chris@82: b[2*i] = xi * wr + xr * wi; Chris@82: b[2*i+1] = xr * wr - xi * wi; Chris@82: } Chris@82: Chris@82: /* convolution: IFFT by FFT with real/imag input/output swapped */ Chris@82: { Chris@82: plan_dft *cldf = (plan_dft *)ego->cldf; Chris@82: cldf->apply(ego->cldf, b, b+1, b, b+1); Chris@82: } Chris@82: Chris@82: /* multiply output by conjugate bluestein sequence */ Chris@82: for (i = 0; i < n; ++i) { Chris@82: E xi = b[2*i], xr = b[2*i+1]; Chris@82: E wr = w[2*i], wi = w[2*i+1]; Chris@82: ro[i*os] = xr * wr + xi * wi; Chris@82: io[i*os] = xi * wr - xr * wi; Chris@82: } Chris@82: Chris@82: X(ifree)(b); Chris@82: } Chris@82: Chris@82: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@82: { Chris@82: P *ego = (P *) ego_; Chris@82: Chris@82: X(plan_awake)(ego->cldf, wakefulness); Chris@82: Chris@82: switch (wakefulness) { Chris@82: case SLEEPY: Chris@82: X(ifree0)(ego->w); ego->w = 0; Chris@82: X(ifree0)(ego->W); ego->W = 0; Chris@82: break; Chris@82: default: Chris@82: A(!ego->w); Chris@82: mktwiddle(wakefulness, ego); Chris@82: break; Chris@82: } Chris@82: } Chris@82: Chris@82: static int applicable(const solver *ego, const problem *p_, Chris@82: const planner *plnr) Chris@82: { Chris@82: const problem_dft *p = (const problem_dft *) p_; Chris@82: UNUSED(ego); Chris@82: return (1 Chris@82: && p->sz->rnk == 1 Chris@82: && p->vecsz->rnk == 0 Chris@82: /* FIXME: allow other sizes */ Chris@82: && X(is_prime)(p->sz->dims[0].n) Chris@82: Chris@82: /* FIXME: avoid infinite recursion of bluestein with itself. Chris@82: This works because all factors in child problems are 2, 3, 5 */ Chris@82: && p->sz->dims[0].n > 16 Chris@82: Chris@82: && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > BLUESTEIN_MAX_SLOW) Chris@82: ); Chris@82: } Chris@82: Chris@82: static void destroy(plan *ego_) Chris@82: { Chris@82: P *ego = (P *) ego_; Chris@82: X(plan_destroy_internal)(ego->cldf); Chris@82: } Chris@82: Chris@82: static void print(const plan *ego_, printer *p) Chris@82: { Chris@82: const P *ego = (const P *)ego_; Chris@82: p->print(p, "(dft-bluestein-%D/%D%(%p%))", Chris@82: ego->n, ego->nb, ego->cldf); Chris@82: } Chris@82: Chris@82: static INT choose_transform_size(INT minsz) Chris@82: { Chris@82: while (!X(factors_into_small_primes)(minsz)) Chris@82: ++minsz; Chris@82: return minsz; Chris@82: } Chris@82: Chris@82: static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) Chris@82: { Chris@82: const problem_dft *p = (const problem_dft *) p_; Chris@82: P *pln; Chris@82: INT n, nb; Chris@82: plan *cldf = 0; Chris@82: R *buf = (R *) 0; Chris@82: Chris@82: static const plan_adt padt = { Chris@82: X(dft_solve), awake, print, destroy Chris@82: }; Chris@82: Chris@82: if (!applicable(ego, p_, plnr)) Chris@82: return (plan *) 0; Chris@82: Chris@82: n = p->sz->dims[0].n; Chris@82: nb = choose_transform_size(2 * n - 1); Chris@82: buf = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS); Chris@82: Chris@82: cldf = X(mkplan_f_d)(plnr, Chris@82: X(mkproblem_dft_d)(X(mktensor_1d)(nb, 2, 2), Chris@82: X(mktensor_1d)(1, 0, 0), Chris@82: buf, buf+1, Chris@82: buf, buf+1), Chris@82: NO_SLOW, 0, 0); Chris@82: if (!cldf) goto nada; Chris@82: Chris@82: X(ifree)(buf); Chris@82: Chris@82: pln = MKPLAN_DFT(P, &padt, apply); Chris@82: Chris@82: pln->n = n; Chris@82: pln->nb = nb; Chris@82: pln->w = 0; Chris@82: pln->W = 0; Chris@82: pln->cldf = cldf; Chris@82: pln->is = p->sz->dims[0].is; Chris@82: pln->os = p->sz->dims[0].os; Chris@82: Chris@82: X(ops_add)(&cldf->ops, &cldf->ops, &pln->super.super.ops); Chris@82: pln->super.super.ops.add += 4 * n + 2 * nb; Chris@82: pln->super.super.ops.mul += 8 * n + 4 * nb; Chris@82: pln->super.super.ops.other += 6 * (n + nb); Chris@82: Chris@82: return &(pln->super.super); Chris@82: Chris@82: nada: Chris@82: X(ifree0)(buf); Chris@82: X(plan_destroy_internal)(cldf); Chris@82: return (plan *)0; Chris@82: } Chris@82: Chris@82: Chris@82: static solver *mksolver(void) Chris@82: { Chris@82: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; Chris@82: S *slv = MKSOLVER(S, &sadt); Chris@82: return &(slv->super); Chris@82: } Chris@82: Chris@82: void X(dft_bluestein_register)(planner *p) Chris@82: { Chris@82: REGISTER_SOLVER(p, mksolver()); Chris@82: }