Chris@64: // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors Chris@64: // Licensed under the MIT License: Chris@64: // Chris@64: // Permission is hereby granted, free of charge, to any person obtaining a copy Chris@64: // of this software and associated documentation files (the "Software"), to deal Chris@64: // in the Software without restriction, including without limitation the rights Chris@64: // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell Chris@64: // copies of the Software, and to permit persons to whom the Software is Chris@64: // furnished to do so, subject to the following conditions: Chris@64: // Chris@64: // The above copyright notice and this permission notice shall be included in Chris@64: // all copies or substantial portions of the Software. Chris@64: // Chris@64: // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR Chris@64: // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, Chris@64: // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE Chris@64: // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER Chris@64: // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, Chris@64: // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN Chris@64: // THE SOFTWARE. Chris@64: Chris@64: #ifndef KJ_ARRAY_H_ Chris@64: #define KJ_ARRAY_H_ Chris@64: Chris@64: #if defined(__GNUC__) && !KJ_HEADER_WARNINGS Chris@64: #pragma GCC system_header Chris@64: #endif Chris@64: Chris@64: #include "common.h" Chris@64: #include Chris@64: #include Chris@64: Chris@64: namespace kj { Chris@64: Chris@64: // ======================================================================================= Chris@64: // ArrayDisposer -- Implementation details. Chris@64: Chris@64: class ArrayDisposer { Chris@64: // Much like Disposer from memory.h. Chris@64: Chris@64: protected: Chris@64: // Do not declare a destructor, as doing so will force a global initializer for Chris@64: // HeapArrayDisposer::instance. Chris@64: Chris@64: virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, Chris@64: size_t capacity, void (*destroyElement)(void*)) const = 0; Chris@64: // Disposes of the array. `destroyElement` invokes the destructor of each element, or is nullptr Chris@64: // if the elements have trivial destructors. `capacity` is the amount of space that was Chris@64: // allocated while `elementCount` is the number of elements that were actually constructed; Chris@64: // these are always the same number for Array but may be different when using ArrayBuilder. Chris@64: Chris@64: public: Chris@64: Chris@64: template Chris@64: void dispose(T* firstElement, size_t elementCount, size_t capacity) const; Chris@64: // Helper wrapper around disposeImpl(). Chris@64: // Chris@64: // Callers must not call dispose() on the same array twice, even if the first call throws Chris@64: // an exception. Chris@64: Chris@64: private: Chris@64: template Chris@64: struct Dispose_; Chris@64: }; Chris@64: Chris@64: class ExceptionSafeArrayUtil { Chris@64: // Utility class that assists in constructing or destroying elements of an array, where the Chris@64: // constructor or destructor could throw exceptions. In case of an exception, Chris@64: // ExceptionSafeArrayUtil's destructor will call destructors on all elements that have been Chris@64: // constructed but not destroyed. Remember that destructors that throw exceptions are required Chris@64: // to use UnwindDetector to detect unwind and avoid exceptions in this case. Therefore, no more Chris@64: // than one exception will be thrown (and the program will not terminate). Chris@64: Chris@64: public: Chris@64: inline ExceptionSafeArrayUtil(void* ptr, size_t elementSize, size_t constructedElementCount, Chris@64: void (*destroyElement)(void*)) Chris@64: : pos(reinterpret_cast(ptr) + elementSize * constructedElementCount), Chris@64: elementSize(elementSize), constructedElementCount(constructedElementCount), Chris@64: destroyElement(destroyElement) {} Chris@64: KJ_DISALLOW_COPY(ExceptionSafeArrayUtil); Chris@64: Chris@64: inline ~ExceptionSafeArrayUtil() noexcept(false) { Chris@64: if (constructedElementCount > 0) destroyAll(); Chris@64: } Chris@64: Chris@64: void construct(size_t count, void (*constructElement)(void*)); Chris@64: // Construct the given number of elements. Chris@64: Chris@64: void destroyAll(); Chris@64: // Destroy all elements. Call this immediately before ExceptionSafeArrayUtil goes out-of-scope Chris@64: // to ensure that one element throwing an exception does not prevent the others from being Chris@64: // destroyed. Chris@64: Chris@64: void release() { constructedElementCount = 0; } Chris@64: // Prevent ExceptionSafeArrayUtil's destructor from destroying the constructed elements. Chris@64: // Call this after you've successfully finished constructing. Chris@64: Chris@64: private: Chris@64: byte* pos; Chris@64: size_t elementSize; Chris@64: size_t constructedElementCount; Chris@64: void (*destroyElement)(void*); Chris@64: }; Chris@64: Chris@64: class DestructorOnlyArrayDisposer: public ArrayDisposer { Chris@64: public: Chris@64: static const DestructorOnlyArrayDisposer instance; Chris@64: Chris@64: void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, Chris@64: size_t capacity, void (*destroyElement)(void*)) const override; Chris@64: }; Chris@64: Chris@64: class NullArrayDisposer: public ArrayDisposer { Chris@64: // An ArrayDisposer that does nothing. Can be used to construct a fake Arrays that doesn't Chris@64: // actually own its content. Chris@64: Chris@64: public: Chris@64: static const NullArrayDisposer instance; Chris@64: Chris@64: void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, Chris@64: size_t capacity, void (*destroyElement)(void*)) const override; Chris@64: }; Chris@64: Chris@64: // ======================================================================================= Chris@64: // Array Chris@64: Chris@64: template Chris@64: class Array { Chris@64: // An owned array which will automatically be disposed of (using an ArrayDisposer) in the Chris@64: // destructor. Can be moved, but not copied. Much like Own, but for arrays rather than Chris@64: // single objects. Chris@64: Chris@64: public: Chris@64: inline Array(): ptr(nullptr), size_(0), disposer(nullptr) {} Chris@64: inline Array(decltype(nullptr)): ptr(nullptr), size_(0), disposer(nullptr) {} Chris@64: inline Array(Array&& other) noexcept Chris@64: : ptr(other.ptr), size_(other.size_), disposer(other.disposer) { Chris@64: other.ptr = nullptr; Chris@64: other.size_ = 0; Chris@64: } Chris@64: inline Array(Array>&& other) noexcept Chris@64: : ptr(other.ptr), size_(other.size_), disposer(other.disposer) { Chris@64: other.ptr = nullptr; Chris@64: other.size_ = 0; Chris@64: } Chris@64: inline Array(T* firstElement, size_t size, const ArrayDisposer& disposer) Chris@64: : ptr(firstElement), size_(size), disposer(&disposer) {} Chris@64: Chris@64: KJ_DISALLOW_COPY(Array); Chris@64: inline ~Array() noexcept { dispose(); } Chris@64: Chris@64: inline operator ArrayPtr() { Chris@64: return ArrayPtr(ptr, size_); Chris@64: } Chris@64: inline operator ArrayPtr() const { Chris@64: return ArrayPtr(ptr, size_); Chris@64: } Chris@64: inline ArrayPtr asPtr() { Chris@64: return ArrayPtr(ptr, size_); Chris@64: } Chris@64: inline ArrayPtr asPtr() const { Chris@64: return ArrayPtr(ptr, size_); Chris@64: } Chris@64: Chris@64: inline size_t size() const { return size_; } Chris@64: inline T& operator[](size_t index) const { Chris@64: KJ_IREQUIRE(index < size_, "Out-of-bounds Array access."); Chris@64: return ptr[index]; Chris@64: } Chris@64: Chris@64: inline const T* begin() const { return ptr; } Chris@64: inline const T* end() const { return ptr + size_; } Chris@64: inline const T& front() const { return *ptr; } Chris@64: inline const T& back() const { return *(ptr + size_ - 1); } Chris@64: inline T* begin() { return ptr; } Chris@64: inline T* end() { return ptr + size_; } Chris@64: inline T& front() { return *ptr; } Chris@64: inline T& back() { return *(ptr + size_ - 1); } Chris@64: Chris@64: inline ArrayPtr slice(size_t start, size_t end) { Chris@64: KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice()."); Chris@64: return ArrayPtr(ptr + start, end - start); Chris@64: } Chris@64: inline ArrayPtr slice(size_t start, size_t end) const { Chris@64: KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice()."); Chris@64: return ArrayPtr(ptr + start, end - start); Chris@64: } Chris@64: Chris@64: inline ArrayPtr asBytes() const { return asPtr().asBytes(); } Chris@64: inline ArrayPtr> asBytes() { return asPtr().asBytes(); } Chris@64: inline ArrayPtr asChars() const { return asPtr().asChars(); } Chris@64: inline ArrayPtr> asChars() { return asPtr().asChars(); } Chris@64: Chris@64: inline Array> releaseAsBytes() { Chris@64: // Like asBytes() but transfers ownership. Chris@64: static_assert(sizeof(T) == sizeof(byte), Chris@64: "releaseAsBytes() only possible on arrays with byte-size elements (e.g. chars)."); Chris@64: Array> result( Chris@64: reinterpret_cast*>(ptr), size_, *disposer); Chris@64: ptr = nullptr; Chris@64: size_ = 0; Chris@64: return result; Chris@64: } Chris@64: inline Array> releaseAsChars() { Chris@64: // Like asChars() but transfers ownership. Chris@64: static_assert(sizeof(T) == sizeof(PropagateConst), Chris@64: "releaseAsChars() only possible on arrays with char-size elements (e.g. bytes)."); Chris@64: Array> result( Chris@64: reinterpret_cast*>(ptr), size_, *disposer); Chris@64: ptr = nullptr; Chris@64: size_ = 0; Chris@64: return result; Chris@64: } Chris@64: Chris@64: inline bool operator==(decltype(nullptr)) const { return size_ == 0; } Chris@64: inline bool operator!=(decltype(nullptr)) const { return size_ != 0; } Chris@64: Chris@64: inline Array& operator=(decltype(nullptr)) { Chris@64: dispose(); Chris@64: return *this; Chris@64: } Chris@64: Chris@64: inline Array& operator=(Array&& other) { Chris@64: dispose(); Chris@64: ptr = other.ptr; Chris@64: size_ = other.size_; Chris@64: disposer = other.disposer; Chris@64: other.ptr = nullptr; Chris@64: other.size_ = 0; Chris@64: return *this; Chris@64: } Chris@64: Chris@64: private: Chris@64: T* ptr; Chris@64: size_t size_; Chris@64: const ArrayDisposer* disposer; Chris@64: Chris@64: inline void dispose() { Chris@64: // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly Chris@64: // dispose again. Chris@64: T* ptrCopy = ptr; Chris@64: size_t sizeCopy = size_; Chris@64: if (ptrCopy != nullptr) { Chris@64: ptr = nullptr; Chris@64: size_ = 0; Chris@64: disposer->dispose(ptrCopy, sizeCopy, sizeCopy); Chris@64: } Chris@64: } Chris@64: Chris@64: template Chris@64: friend class Array; Chris@64: }; Chris@64: Chris@64: static_assert(!canMemcpy>(), "canMemcpy<>() is broken"); Chris@64: Chris@64: namespace _ { // private Chris@64: Chris@64: class HeapArrayDisposer final: public ArrayDisposer { Chris@64: public: Chris@64: template Chris@64: static T* allocate(size_t count); Chris@64: template Chris@64: static T* allocateUninitialized(size_t count); Chris@64: Chris@64: static const HeapArrayDisposer instance; Chris@64: Chris@64: private: Chris@64: static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity, Chris@64: void (*constructElement)(void*), void (*destroyElement)(void*)); Chris@64: // Allocates and constructs the array. Both function pointers are null if the constructor is Chris@64: // trivial, otherwise destroyElement is null if the constructor doesn't throw. Chris@64: Chris@64: virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, Chris@64: size_t capacity, void (*destroyElement)(void*)) const override; Chris@64: Chris@64: template Chris@64: struct Allocate_; Chris@64: }; Chris@64: Chris@64: } // namespace _ (private) Chris@64: Chris@64: template Chris@64: inline Array heapArray(size_t size) { Chris@64: // Much like `heap()` from memory.h, allocates a new array on the heap. Chris@64: Chris@64: return Array(_::HeapArrayDisposer::allocate(size), size, Chris@64: _::HeapArrayDisposer::instance); Chris@64: } Chris@64: Chris@64: template Array heapArray(const T* content, size_t size); Chris@64: template Array heapArray(ArrayPtr content); Chris@64: template Array heapArray(ArrayPtr content); Chris@64: template Array heapArray(Iterator begin, Iterator end); Chris@64: template Array heapArray(std::initializer_list init); Chris@64: // Allocate a heap array containing a copy of the given content. Chris@64: Chris@64: template Chris@64: Array heapArrayFromIterable(Container&& a) { return heapArray(a.begin(), a.end()); } Chris@64: template Chris@64: Array heapArrayFromIterable(Array&& a) { return mv(a); } Chris@64: Chris@64: // ======================================================================================= Chris@64: // ArrayBuilder Chris@64: Chris@64: template Chris@64: class ArrayBuilder { Chris@64: // Class which lets you build an Array specifying the exact constructor arguments for each Chris@64: // element, rather than starting by default-constructing them. Chris@64: Chris@64: public: Chris@64: ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {} Chris@64: ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {} Chris@64: explicit ArrayBuilder(RemoveConst* firstElement, size_t capacity, Chris@64: const ArrayDisposer& disposer) Chris@64: : ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity), Chris@64: disposer(&disposer) {} Chris@64: ArrayBuilder(ArrayBuilder&& other) Chris@64: : ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) { Chris@64: other.ptr = nullptr; Chris@64: other.pos = nullptr; Chris@64: other.endPtr = nullptr; Chris@64: } Chris@64: KJ_DISALLOW_COPY(ArrayBuilder); Chris@64: inline ~ArrayBuilder() noexcept(false) { dispose(); } Chris@64: Chris@64: inline operator ArrayPtr() { Chris@64: return arrayPtr(ptr, pos); Chris@64: } Chris@64: inline operator ArrayPtr() const { Chris@64: return arrayPtr(ptr, pos); Chris@64: } Chris@64: inline ArrayPtr asPtr() { Chris@64: return arrayPtr(ptr, pos); Chris@64: } Chris@64: inline ArrayPtr asPtr() const { Chris@64: return arrayPtr(ptr, pos); Chris@64: } Chris@64: Chris@64: inline size_t size() const { return pos - ptr; } Chris@64: inline size_t capacity() const { return endPtr - ptr; } Chris@64: inline T& operator[](size_t index) const { Chris@64: KJ_IREQUIRE(index < implicitCast(pos - ptr), "Out-of-bounds Array access."); Chris@64: return ptr[index]; Chris@64: } Chris@64: Chris@64: inline const T* begin() const { return ptr; } Chris@64: inline const T* end() const { return pos; } Chris@64: inline const T& front() const { return *ptr; } Chris@64: inline const T& back() const { return *(pos - 1); } Chris@64: inline T* begin() { return ptr; } Chris@64: inline T* end() { return pos; } Chris@64: inline T& front() { return *ptr; } Chris@64: inline T& back() { return *(pos - 1); } Chris@64: Chris@64: ArrayBuilder& operator=(ArrayBuilder&& other) { Chris@64: dispose(); Chris@64: ptr = other.ptr; Chris@64: pos = other.pos; Chris@64: endPtr = other.endPtr; Chris@64: disposer = other.disposer; Chris@64: other.ptr = nullptr; Chris@64: other.pos = nullptr; Chris@64: other.endPtr = nullptr; Chris@64: return *this; Chris@64: } Chris@64: ArrayBuilder& operator=(decltype(nullptr)) { Chris@64: dispose(); Chris@64: return *this; Chris@64: } Chris@64: Chris@64: template Chris@64: T& add(Params&&... params) { Chris@64: KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder."); Chris@64: ctor(*pos, kj::fwd(params)...); Chris@64: return *pos++; Chris@64: } Chris@64: Chris@64: template Chris@64: void addAll(Container&& container) { Chris@64: addAll()>( Chris@64: container.begin(), container.end()); Chris@64: } Chris@64: Chris@64: template Chris@64: void addAll(Iterator start, Iterator end); Chris@64: Chris@64: void removeLast() { Chris@64: KJ_IREQUIRE(pos > ptr, "No elements present to remove."); Chris@64: kj::dtor(*--pos); Chris@64: } Chris@64: Chris@64: void truncate(size_t size) { Chris@64: KJ_IREQUIRE(size <= this->size(), "can't use truncate() to expand"); Chris@64: Chris@64: T* target = ptr + size; Chris@64: if (__has_trivial_destructor(T)) { Chris@64: pos = target; Chris@64: } else { Chris@64: while (pos > target) { Chris@64: kj::dtor(*--pos); Chris@64: } Chris@64: } Chris@64: } Chris@64: Chris@64: void resize(size_t size) { Chris@64: KJ_IREQUIRE(size <= capacity(), "can't resize past capacity"); Chris@64: Chris@64: T* target = ptr + size; Chris@64: if (target > pos) { Chris@64: // expand Chris@64: if (__has_trivial_constructor(T)) { Chris@64: pos = target; Chris@64: } else { Chris@64: while (pos < target) { Chris@64: kj::ctor(*pos++); Chris@64: } Chris@64: } Chris@64: } else { Chris@64: // truncate Chris@64: if (__has_trivial_destructor(T)) { Chris@64: pos = target; Chris@64: } else { Chris@64: while (pos > target) { Chris@64: kj::dtor(*--pos); Chris@64: } Chris@64: } Chris@64: } Chris@64: } Chris@64: Chris@64: Array finish() { Chris@64: // We could safely remove this check if we assume that the disposer implementation doesn't Chris@64: // need to know the original capacity, as is thes case with HeapArrayDisposer since it uses Chris@64: // operator new() or if we created a custom disposer for ArrayBuilder which stores the capacity Chris@64: // in a prefix. But that would make it hard to write cleverer heap allocators, and anyway this Chris@64: // check might catch bugs. Probably people should use Vector if they want to build arrays Chris@64: // without knowing the final size in advance. Chris@64: KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely."); Chris@64: Array result(reinterpret_cast(ptr), pos - ptr, *disposer); Chris@64: ptr = nullptr; Chris@64: pos = nullptr; Chris@64: endPtr = nullptr; Chris@64: return result; Chris@64: } Chris@64: Chris@64: inline bool isFull() const { Chris@64: return pos == endPtr; Chris@64: } Chris@64: Chris@64: private: Chris@64: T* ptr; Chris@64: RemoveConst* pos; Chris@64: T* endPtr; Chris@64: const ArrayDisposer* disposer; Chris@64: Chris@64: inline void dispose() { Chris@64: // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly Chris@64: // dispose again. Chris@64: T* ptrCopy = ptr; Chris@64: T* posCopy = pos; Chris@64: T* endCopy = endPtr; Chris@64: if (ptrCopy != nullptr) { Chris@64: ptr = nullptr; Chris@64: pos = nullptr; Chris@64: endPtr = nullptr; Chris@64: disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy); Chris@64: } Chris@64: } Chris@64: }; Chris@64: Chris@64: template Chris@64: inline ArrayBuilder heapArrayBuilder(size_t size) { Chris@64: // Like `heapArray()` but does not default-construct the elements. You must construct them Chris@64: // manually by calling `add()`. Chris@64: Chris@64: return ArrayBuilder(_::HeapArrayDisposer::allocateUninitialized>(size), Chris@64: size, _::HeapArrayDisposer::instance); Chris@64: } Chris@64: Chris@64: // ======================================================================================= Chris@64: // Inline Arrays Chris@64: Chris@64: template Chris@64: class FixedArray { Chris@64: // A fixed-width array whose storage is allocated inline rather than on the heap. Chris@64: Chris@64: public: Chris@64: inline size_t size() const { return fixedSize; } Chris@64: inline T* begin() { return content; } Chris@64: inline T* end() { return content + fixedSize; } Chris@64: inline const T* begin() const { return content; } Chris@64: inline const T* end() const { return content + fixedSize; } Chris@64: Chris@64: inline operator ArrayPtr() { Chris@64: return arrayPtr(content, fixedSize); Chris@64: } Chris@64: inline operator ArrayPtr() const { Chris@64: return arrayPtr(content, fixedSize); Chris@64: } Chris@64: Chris@64: inline T& operator[](size_t index) { return content[index]; } Chris@64: inline const T& operator[](size_t index) const { return content[index]; } Chris@64: Chris@64: private: Chris@64: T content[fixedSize]; Chris@64: }; Chris@64: Chris@64: template Chris@64: class CappedArray { Chris@64: // Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit Chris@64: // specified by the template parameter. Chris@64: // Chris@64: // TODO(someday): Don't construct elements past currentSize? Chris@64: Chris@64: public: Chris@64: inline KJ_CONSTEXPR() CappedArray(): currentSize(fixedSize) {} Chris@64: inline explicit constexpr CappedArray(size_t s): currentSize(s) {} Chris@64: Chris@64: inline size_t size() const { return currentSize; } Chris@64: inline void setSize(size_t s) { KJ_IREQUIRE(s <= fixedSize); currentSize = s; } Chris@64: inline T* begin() { return content; } Chris@64: inline T* end() { return content + currentSize; } Chris@64: inline const T* begin() const { return content; } Chris@64: inline const T* end() const { return content + currentSize; } Chris@64: Chris@64: inline operator ArrayPtr() { Chris@64: return arrayPtr(content, currentSize); Chris@64: } Chris@64: inline operator ArrayPtr() const { Chris@64: return arrayPtr(content, currentSize); Chris@64: } Chris@64: Chris@64: inline T& operator[](size_t index) { return content[index]; } Chris@64: inline const T& operator[](size_t index) const { return content[index]; } Chris@64: Chris@64: private: Chris@64: size_t currentSize; Chris@64: T content[fixedSize]; Chris@64: }; Chris@64: Chris@64: // ======================================================================================= Chris@64: // KJ_MAP Chris@64: Chris@64: #define KJ_MAP(elementName, array) \ Chris@64: ::kj::_::Mapper(array) * \ Chris@64: [&](typename ::kj::_::Mapper::Element elementName) Chris@64: // Applies some function to every element of an array, returning an Array of the results, with Chris@64: // nice syntax. Example: Chris@64: // Chris@64: // StringPtr foo = "abcd"; Chris@64: // Array bar = KJ_MAP(c, foo) -> char { return c + 1; }; Chris@64: // KJ_ASSERT(str(bar) == "bcde"); Chris@64: Chris@64: namespace _ { // private Chris@64: Chris@64: template Chris@64: struct Mapper { Chris@64: T array; Chris@64: Mapper(T&& array): array(kj::fwd(array)) {} Chris@64: template Chris@64: auto operator*(Func&& func) -> Array { Chris@64: auto builder = heapArrayBuilder(array.size()); Chris@64: for (auto iter = array.begin(); iter != array.end(); ++iter) { Chris@64: builder.add(func(*iter)); Chris@64: } Chris@64: return builder.finish(); Chris@64: } Chris@64: typedef decltype(*kj::instance().begin()) Element; Chris@64: }; Chris@64: Chris@64: template Chris@64: struct Mapper { Chris@64: T* array; Chris@64: Mapper(T* array): array(array) {} Chris@64: template Chris@64: auto operator*(Func&& func) -> Array { Chris@64: auto builder = heapArrayBuilder(s); Chris@64: for (size_t i = 0; i < s; i++) { Chris@64: builder.add(func(array[i])); Chris@64: } Chris@64: return builder.finish(); Chris@64: } Chris@64: typedef decltype(*array)& Element; Chris@64: }; Chris@64: Chris@64: } // namespace _ (private) Chris@64: Chris@64: // ======================================================================================= Chris@64: // Inline implementation details Chris@64: Chris@64: template Chris@64: struct ArrayDisposer::Dispose_ { Chris@64: static void dispose(T* firstElement, size_t elementCount, size_t capacity, Chris@64: const ArrayDisposer& disposer) { Chris@64: disposer.disposeImpl(const_cast*>(firstElement), Chris@64: sizeof(T), elementCount, capacity, nullptr); Chris@64: } Chris@64: }; Chris@64: template Chris@64: struct ArrayDisposer::Dispose_ { Chris@64: static void destruct(void* ptr) { Chris@64: kj::dtor(*reinterpret_cast(ptr)); Chris@64: } Chris@64: Chris@64: static void dispose(T* firstElement, size_t elementCount, size_t capacity, Chris@64: const ArrayDisposer& disposer) { Chris@64: disposer.disposeImpl(firstElement, sizeof(T), elementCount, capacity, &destruct); Chris@64: } Chris@64: }; Chris@64: Chris@64: template Chris@64: void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const { Chris@64: Dispose_::dispose(firstElement, elementCount, capacity, *this); Chris@64: } Chris@64: Chris@64: namespace _ { // private Chris@64: Chris@64: template Chris@64: struct HeapArrayDisposer::Allocate_ { Chris@64: static T* allocate(size_t elementCount, size_t capacity) { Chris@64: return reinterpret_cast(allocateImpl( Chris@64: sizeof(T), elementCount, capacity, nullptr, nullptr)); Chris@64: } Chris@64: }; Chris@64: template Chris@64: struct HeapArrayDisposer::Allocate_ { Chris@64: static void construct(void* ptr) { Chris@64: kj::ctor(*reinterpret_cast(ptr)); Chris@64: } Chris@64: static T* allocate(size_t elementCount, size_t capacity) { Chris@64: return reinterpret_cast(allocateImpl( Chris@64: sizeof(T), elementCount, capacity, &construct, nullptr)); Chris@64: } Chris@64: }; Chris@64: template Chris@64: struct HeapArrayDisposer::Allocate_ { Chris@64: static void construct(void* ptr) { Chris@64: kj::ctor(*reinterpret_cast(ptr)); Chris@64: } Chris@64: static void destruct(void* ptr) { Chris@64: kj::dtor(*reinterpret_cast(ptr)); Chris@64: } Chris@64: static T* allocate(size_t elementCount, size_t capacity) { Chris@64: return reinterpret_cast(allocateImpl( Chris@64: sizeof(T), elementCount, capacity, &construct, &destruct)); Chris@64: } Chris@64: }; Chris@64: Chris@64: template Chris@64: T* HeapArrayDisposer::allocate(size_t count) { Chris@64: return Allocate_::allocate(count, count); Chris@64: } Chris@64: Chris@64: template Chris@64: T* HeapArrayDisposer::allocateUninitialized(size_t count) { Chris@64: return Allocate_::allocate(0, count); Chris@64: } Chris@64: Chris@64: template ()> Chris@64: struct CopyConstructArray_; Chris@64: Chris@64: template Chris@64: struct CopyConstructArray_ { Chris@64: static inline T* apply(T* __restrict__ pos, T* start, T* end) { Chris@64: memcpy(pos, start, reinterpret_cast(end) - reinterpret_cast(start)); Chris@64: return pos + (end - start); Chris@64: } Chris@64: }; Chris@64: Chris@64: template Chris@64: struct CopyConstructArray_ { Chris@64: static inline T* apply(T* __restrict__ pos, const T* start, const T* end) { Chris@64: memcpy(pos, start, reinterpret_cast(end) - reinterpret_cast(start)); Chris@64: return pos + (end - start); Chris@64: } Chris@64: }; Chris@64: Chris@64: template Chris@64: struct CopyConstructArray_ { Chris@64: static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) { Chris@64: // Since both the copy constructor and assignment operator are trivial, we know that assignment Chris@64: // is equivalent to copy-constructing. So we can make this case somewhat easier for the Chris@64: // compiler to optimize. Chris@64: while (start != end) { Chris@64: *pos++ = *start++; Chris@64: } Chris@64: return pos; Chris@64: } Chris@64: }; Chris@64: Chris@64: template Chris@64: struct CopyConstructArray_ { Chris@64: struct ExceptionGuard { Chris@64: T* start; Chris@64: T* pos; Chris@64: inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {} Chris@64: ~ExceptionGuard() noexcept(false) { Chris@64: while (pos > start) { Chris@64: dtor(*--pos); Chris@64: } Chris@64: } Chris@64: }; Chris@64: Chris@64: static T* apply(T* __restrict__ pos, Iterator start, Iterator end) { Chris@64: // Verify that T can be *implicitly* constructed from the source values. Chris@64: if (false) implicitCast(*start); Chris@64: Chris@64: if (noexcept(T(*start))) { Chris@64: while (start != end) { Chris@64: ctor(*pos++, *start++); Chris@64: } Chris@64: return pos; Chris@64: } else { Chris@64: // Crap. This is complicated. Chris@64: ExceptionGuard guard(pos); Chris@64: while (start != end) { Chris@64: ctor(*guard.pos, *start++); Chris@64: ++guard.pos; Chris@64: } Chris@64: guard.start = guard.pos; Chris@64: return guard.pos; Chris@64: } Chris@64: } Chris@64: }; Chris@64: Chris@64: template Chris@64: struct CopyConstructArray_ { Chris@64: // Actually move-construct. Chris@64: Chris@64: struct ExceptionGuard { Chris@64: T* start; Chris@64: T* pos; Chris@64: inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {} Chris@64: ~ExceptionGuard() noexcept(false) { Chris@64: while (pos > start) { Chris@64: dtor(*--pos); Chris@64: } Chris@64: } Chris@64: }; Chris@64: Chris@64: static T* apply(T* __restrict__ pos, Iterator start, Iterator end) { Chris@64: // Verify that T can be *implicitly* constructed from the source values. Chris@64: if (false) implicitCast(kj::mv(*start)); Chris@64: Chris@64: if (noexcept(T(kj::mv(*start)))) { Chris@64: while (start != end) { Chris@64: ctor(*pos++, kj::mv(*start++)); Chris@64: } Chris@64: return pos; Chris@64: } else { Chris@64: // Crap. This is complicated. Chris@64: ExceptionGuard guard(pos); Chris@64: while (start != end) { Chris@64: ctor(*guard.pos, kj::mv(*start++)); Chris@64: ++guard.pos; Chris@64: } Chris@64: guard.start = guard.pos; Chris@64: return guard.pos; Chris@64: } Chris@64: } Chris@64: }; Chris@64: Chris@64: } // namespace _ (private) Chris@64: Chris@64: template Chris@64: template Chris@64: void ArrayBuilder::addAll(Iterator start, Iterator end) { Chris@64: pos = _::CopyConstructArray_, Decay, move>::apply(pos, start, end); Chris@64: } Chris@64: Chris@64: template Chris@64: Array heapArray(const T* content, size_t size) { Chris@64: ArrayBuilder builder = heapArrayBuilder(size); Chris@64: builder.addAll(content, content + size); Chris@64: return builder.finish(); Chris@64: } Chris@64: Chris@64: template Chris@64: Array heapArray(T* content, size_t size) { Chris@64: ArrayBuilder builder = heapArrayBuilder(size); Chris@64: builder.addAll(content, content + size); Chris@64: return builder.finish(); Chris@64: } Chris@64: Chris@64: template Chris@64: Array heapArray(ArrayPtr content) { Chris@64: ArrayBuilder builder = heapArrayBuilder(content.size()); Chris@64: builder.addAll(content); Chris@64: return builder.finish(); Chris@64: } Chris@64: Chris@64: template Chris@64: Array heapArray(ArrayPtr content) { Chris@64: ArrayBuilder builder = heapArrayBuilder(content.size()); Chris@64: builder.addAll(content); Chris@64: return builder.finish(); Chris@64: } Chris@64: Chris@64: template Array Chris@64: heapArray(Iterator begin, Iterator end) { Chris@64: ArrayBuilder builder = heapArrayBuilder(end - begin); Chris@64: builder.addAll(begin, end); Chris@64: return builder.finish(); Chris@64: } Chris@64: Chris@64: template Chris@64: inline Array heapArray(std::initializer_list init) { Chris@64: return heapArray(init.begin(), init.end()); Chris@64: } Chris@64: Chris@64: } // namespace kj Chris@64: Chris@64: #endif // KJ_ARRAY_H_