cannam@95: /* cannam@95: * Copyright (c) 2003, 2007-11 Matteo Frigo cannam@95: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: /* Recursive "radix-r" distributed transpose, which breaks a transpose cannam@95: over p processes into p/r transposes over r processes plus r cannam@95: transposes over p/r processes. If performed recursively, this cannam@95: produces a total of O(p log p) messages vs. O(p^2) messages for a cannam@95: direct approach. cannam@95: cannam@95: However, this is not necessarily an improvement. The total size of cannam@95: all the messages is actually increased from O(N) to O(N log p) cannam@95: where N is the total data size. Also, the amount of local data cannam@95: rearrangement is increased. So, it's not clear, a priori, what the cannam@95: best algorithm will be, and we'll leave it to the planner. (In cannam@95: theory and practice, it looks like this becomes advantageous for cannam@95: large p, in the limit where the message sizes are small and cannam@95: latency-dominated.) cannam@95: */ cannam@95: cannam@95: #include "mpi-transpose.h" cannam@95: #include cannam@95: cannam@95: typedef struct { cannam@95: solver super; cannam@95: int (*radix)(int np); cannam@95: const char *nam; cannam@95: int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ cannam@95: } S; cannam@95: cannam@95: typedef struct { cannam@95: plan_mpi_transpose super; cannam@95: cannam@95: plan *cld1, *cldtr, *cldtm; cannam@95: int preserve_input; cannam@95: cannam@95: int r; /* "radix" */ cannam@95: const char *nam; cannam@95: } P; cannam@95: cannam@95: static void apply(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: plan_rdft *cld1, *cldtr, *cldtm; cannam@95: cannam@95: cld1 = (plan_rdft *) ego->cld1; cannam@95: if (cld1) cld1->apply((plan *) cld1, I, O); cannam@95: cannam@95: if (ego->preserve_input) I = O; cannam@95: cannam@95: cldtr = (plan_rdft *) ego->cldtr; cannam@95: if (cldtr) cldtr->apply((plan *) cldtr, O, I); cannam@95: cannam@95: cldtm = (plan_rdft *) ego->cldtm; cannam@95: if (cldtm) cldtm->apply((plan *) cldtm, I, O); cannam@95: } cannam@95: cannam@95: static int radix_sqrt(int np) cannam@95: { cannam@95: int r; cannam@95: for (r = (int) (X(isqrt)(np)); np % r != 0; ++r) cannam@95: ; cannam@95: return r; cannam@95: } cannam@95: cannam@95: static int radix_first(int np) cannam@95: { cannam@95: int r = (int) (X(first_divisor)(np)); cannam@95: return (r >= (int) (X(isqrt)(np)) ? 0 : r); cannam@95: } cannam@95: cannam@95: /* the local allocated space on process pe required for the given transpose cannam@95: dimensions and block sizes */ cannam@95: static INT transpose_space(INT nx, INT ny, INT block, INT tblock, int pe) cannam@95: { cannam@95: return X(imax)(XM(block)(nx, block, pe) * ny, cannam@95: nx * XM(block)(ny, tblock, pe)); cannam@95: } cannam@95: cannam@95: /* check whether the recursive transposes fit within the space cannam@95: that must have been allocated on each process for this transpose; cannam@95: this must be modified if the subdivision in mkplan is changed! */ cannam@95: static int enough_space(INT nx, INT ny, INT block, INT tblock, cannam@95: int r, int n_pes) cannam@95: { cannam@95: int pe; cannam@95: int m = n_pes / r; cannam@95: for (pe = 0; pe < n_pes; ++pe) { cannam@95: INT space = transpose_space(nx, ny, block, tblock, pe); cannam@95: INT b1 = XM(block)(nx, r * block, pe / r); cannam@95: INT b2 = XM(block)(ny, m * tblock, pe % r); cannam@95: if (transpose_space(b1, ny, block, m*tblock, pe % r) > space cannam@95: || transpose_space(nx, b2, r*block, tblock, pe / r) > space) cannam@95: return 0; cannam@95: } cannam@95: return 1; cannam@95: } cannam@95: cannam@95: /* In theory, transpose-recurse becomes advantageous for message sizes cannam@95: below some minimum, assuming that the time is dominated by cannam@95: communications. In practice, we want to constrain the minimum cannam@95: message size for transpose-recurse to keep the planning time down. cannam@95: I've set this conservatively according to some simple experiments cannam@95: on a Cray XT3 where the crossover message size was 128, although on cannam@95: a larger-latency machine the crossover will be larger. */ cannam@95: #define SMALL_MESSAGE 2048 cannam@95: cannam@95: static int applicable(const S *ego, const problem *p_, cannam@95: const planner *plnr, int *r) cannam@95: { cannam@95: const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_; cannam@95: int n_pes; cannam@95: MPI_Comm_size(p->comm, &n_pes); cannam@95: return (1 cannam@95: && p->tblock * n_pes == p->ny cannam@95: && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) cannam@95: && p->I != p->O)) cannam@95: && (*r = ego->radix(n_pes)) && *r < n_pes && *r > 1 cannam@95: && enough_space(p->nx, p->ny, p->block, p->tblock, *r, n_pes) cannam@95: && (!CONSERVE_MEMORYP(plnr) || *r > 8 cannam@95: || !X(toobig)((p->nx * (p->ny / n_pes) * p->vn) / *r)) cannam@95: && (!NO_SLOWP(plnr) || cannam@95: (p->nx * (p->ny / n_pes) * p->vn) / n_pes <= SMALL_MESSAGE) cannam@95: && ONLY_TRANSPOSEDP(p->flags) cannam@95: ); cannam@95: } cannam@95: cannam@95: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_awake)(ego->cld1, wakefulness); cannam@95: X(plan_awake)(ego->cldtr, wakefulness); cannam@95: X(plan_awake)(ego->cldtm, wakefulness); cannam@95: } cannam@95: cannam@95: static void destroy(plan *ego_) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_destroy_internal)(ego->cldtm); cannam@95: X(plan_destroy_internal)(ego->cldtr); cannam@95: X(plan_destroy_internal)(ego->cld1); cannam@95: } cannam@95: cannam@95: static void print(const plan *ego_, printer *p) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: p->print(p, "(mpi-transpose-recurse/%s/%d%s%(%p%)%(%p%)%(%p%))", cannam@95: ego->nam, ego->r, ego->preserve_input==2 ?"/p":"", cannam@95: ego->cld1, ego->cldtr, ego->cldtm); cannam@95: } cannam@95: cannam@95: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@95: { cannam@95: const S *ego = (const S *) ego_; cannam@95: const problem_mpi_transpose *p; cannam@95: P *pln; cannam@95: plan *cld1 = 0, *cldtr = 0, *cldtm = 0; cannam@95: R *I, *O; cannam@95: int me, np, r, m; cannam@95: INT b; cannam@95: MPI_Comm comm2; cannam@95: static const plan_adt padt = { cannam@95: XM(transpose_solve), awake, print, destroy cannam@95: }; cannam@95: cannam@95: UNUSED(ego); cannam@95: cannam@95: if (!applicable(ego, p_, plnr, &r)) cannam@95: return (plan *) 0; cannam@95: cannam@95: p = (const problem_mpi_transpose *) p_; cannam@95: cannam@95: MPI_Comm_size(p->comm, &np); cannam@95: MPI_Comm_rank(p->comm, &me); cannam@95: m = np / r; cannam@95: A(r * m == np); cannam@95: cannam@95: I = p->I; O = p->O; cannam@95: cannam@95: b = XM(block)(p->nx, p->block, me); cannam@95: A(p->tblock * np == p->ny); /* this is currently required for cld1 */ cannam@95: if (p->flags & TRANSPOSED_IN) { cannam@95: /* m x r x (bt x b x vn) -> r x m x (bt x b x vn) */ cannam@95: INT vn = p->vn * b * p->tblock; cannam@95: cld1 = X(mkplan_f_d)(plnr, cannam@95: X(mkproblem_rdft_0_d)(X(mktensor_3d) cannam@95: (m, r*vn, vn, cannam@95: r, vn, m*vn, cannam@95: vn, 1, 1), cannam@95: I, O), cannam@95: 0, 0, NO_SLOW); cannam@95: } cannam@95: else if (I != O) { /* combine cld1 with TRANSPOSED_IN permutation */ cannam@95: /* b x m x r x bt x vn -> r x m x bt x b x vn */ cannam@95: INT vn = p->vn; cannam@95: INT bt = p->tblock; cannam@95: cld1 = X(mkplan_f_d)(plnr, cannam@95: X(mkproblem_rdft_0_d)(X(mktensor_5d) cannam@95: (b, m*r*bt*vn, vn, cannam@95: m, r*bt*vn, bt*b*vn, cannam@95: r, bt*vn, m*bt*b*vn, cannam@95: bt, vn, b*vn, cannam@95: vn, 1, 1), cannam@95: I, O), cannam@95: 0, 0, NO_SLOW); cannam@95: } cannam@95: else { /* TRANSPOSED_IN permutation must be separate for in-place */ cannam@95: /* b x (m x r) x bt x vn -> b x (r x m) x bt x vn */ cannam@95: INT vn = p->vn * p->tblock; cannam@95: cld1 = X(mkplan_f_d)(plnr, cannam@95: X(mkproblem_rdft_0_d)(X(mktensor_4d) cannam@95: (m, r*vn, vn, cannam@95: r, vn, m*vn, cannam@95: vn, 1, 1, cannam@95: b, np*vn, np*vn), cannam@95: I, O), cannam@95: 0, 0, NO_SLOW); cannam@95: } cannam@95: if (XM(any_true)(!cld1, p->comm)) goto nada; cannam@95: cannam@95: if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O; cannam@95: cannam@95: b = XM(block)(p->nx, r * p->block, me / r); cannam@95: MPI_Comm_split(p->comm, me / r, me, &comm2); cannam@95: if (b) cannam@95: cldtr = X(mkplan_d)(plnr, XM(mkproblem_transpose) cannam@95: (b, p->ny, p->vn, cannam@95: O, I, p->block, m * p->tblock, comm2, cannam@95: p->I != p->O cannam@95: ? TRANSPOSED_IN : (p->flags & TRANSPOSED_IN))); cannam@95: MPI_Comm_free(&comm2); cannam@95: if (XM(any_true)(b && !cldtr, p->comm)) goto nada; cannam@95: cannam@95: b = XM(block)(p->ny, m * p->tblock, me % r); cannam@95: MPI_Comm_split(p->comm, me % r, me, &comm2); cannam@95: if (b) cannam@95: cldtm = X(mkplan_d)(plnr, XM(mkproblem_transpose) cannam@95: (p->nx, b, p->vn, cannam@95: I, O, r * p->block, p->tblock, comm2, cannam@95: TRANSPOSED_IN | (p->flags & TRANSPOSED_OUT))); cannam@95: MPI_Comm_free(&comm2); cannam@95: if (XM(any_true)(b && !cldtm, p->comm)) goto nada; cannam@95: cannam@95: pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply); cannam@95: cannam@95: pln->cld1 = cld1; cannam@95: pln->cldtr = cldtr; cannam@95: pln->cldtm = cldtm; cannam@95: pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); cannam@95: pln->r = r; cannam@95: pln->nam = ego->nam; cannam@95: cannam@95: pln->super.super.ops = cld1->ops; cannam@95: if (cldtr) X(ops_add2)(&cldtr->ops, &pln->super.super.ops); cannam@95: if (cldtm) X(ops_add2)(&cldtm->ops, &pln->super.super.ops); cannam@95: cannam@95: return &(pln->super.super); cannam@95: cannam@95: nada: cannam@95: X(plan_destroy_internal)(cldtm); cannam@95: X(plan_destroy_internal)(cldtr); cannam@95: X(plan_destroy_internal)(cld1); cannam@95: return (plan *) 0; cannam@95: } cannam@95: cannam@95: static solver *mksolver(int preserve_input, cannam@95: int (*radix)(int np), const char *nam) cannam@95: { cannam@95: static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 }; cannam@95: S *slv = MKSOLVER(S, &sadt); cannam@95: slv->preserve_input = preserve_input; cannam@95: slv->radix = radix; cannam@95: slv->nam = nam; cannam@95: return &(slv->super); cannam@95: } cannam@95: cannam@95: void XM(transpose_recurse_register)(planner *p) cannam@95: { cannam@95: int preserve_input; cannam@95: for (preserve_input = 0; preserve_input <= 1; ++preserve_input) { cannam@95: REGISTER_SOLVER(p, mksolver(preserve_input, radix_sqrt, "sqrt")); cannam@95: REGISTER_SOLVER(p, mksolver(preserve_input, radix_first, "first")); cannam@95: } cannam@95: }