cannam@95: /* cannam@95: * Copyright (c) 2003, 2007-11 Matteo Frigo cannam@95: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: #include "dft.h" cannam@95: cannam@95: typedef struct { cannam@95: solver super; cannam@95: } S; cannam@95: cannam@95: typedef struct { cannam@95: plan_dft super; cannam@95: twid *td; cannam@95: INT n, is, os; cannam@95: } P; cannam@95: cannam@95: cannam@95: static void cdot(INT n, const E *x, const R *w, cannam@95: R *or0, R *oi0, R *or1, R *oi1) cannam@95: { cannam@95: INT i; cannam@95: cannam@95: E rr = x[0], ri = 0, ir = x[1], ii = 0; cannam@95: x += 2; cannam@95: for (i = 1; i + i < n; ++i) { cannam@95: rr += x[0] * w[0]; cannam@95: ir += x[1] * w[0]; cannam@95: ri += x[2] * w[1]; cannam@95: ii += x[3] * w[1]; cannam@95: x += 4; w += 2; cannam@95: } cannam@95: *or0 = rr + ii; cannam@95: *oi0 = ir - ri; cannam@95: *or1 = rr - ii; cannam@95: *oi1 = ir + ri; cannam@95: } cannam@95: cannam@95: static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o, cannam@95: R *pr, R *pi) cannam@95: { cannam@95: INT i; cannam@95: E sr, si; cannam@95: o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2; cannam@95: for (i = 1; i + i < n; ++i) { cannam@95: sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]); cannam@95: si += (o[1] = xi[i * xs] + xi[(n - i) * xs]); cannam@95: o[2] = xr[i * xs] - xr[(n - i) * xs]; cannam@95: o[3] = xi[i * xs] - xi[(n - i) * xs]; cannam@95: o += 4; cannam@95: } cannam@95: *pr = sr; cannam@95: *pi = si; cannam@95: } cannam@95: cannam@95: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: INT i; cannam@95: INT n = ego->n, is = ego->is, os = ego->os; cannam@95: const R *W = ego->td->W; cannam@95: E *buf; cannam@95: size_t bufsz = n * 2 * sizeof(E); cannam@95: cannam@95: BUF_ALLOC(E *, buf, bufsz); cannam@95: hartley(n, ri, ii, is, buf, ro, io); cannam@95: cannam@95: for (i = 1; i + i < n; ++i) { cannam@95: cdot(n, buf, W, cannam@95: ro + i * os, io + i * os, cannam@95: ro + (n - i) * os, io + (n - i) * os); cannam@95: W += n - 1; cannam@95: } cannam@95: cannam@95: BUF_FREE(buf, bufsz); cannam@95: } cannam@95: cannam@95: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: static const tw_instr half_tw[] = { cannam@95: { TW_HALF, 1, 0 }, cannam@95: { TW_NEXT, 1, 0 } cannam@95: }; cannam@95: cannam@95: X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n, cannam@95: (ego->n - 1) / 2); cannam@95: } cannam@95: cannam@95: static void print(const plan *ego_, printer *p) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: cannam@95: p->print(p, "(dft-generic-%D)", ego->n); cannam@95: } cannam@95: cannam@95: static int applicable(const solver *ego, const problem *p_, cannam@95: const planner *plnr) cannam@95: { cannam@95: const problem_dft *p = (const problem_dft *) p_; cannam@95: UNUSED(ego); cannam@95: cannam@95: return (1 cannam@95: && p->sz->rnk == 1 cannam@95: && p->vecsz->rnk == 0 cannam@95: && (p->sz->dims[0].n % 2) == 1 cannam@95: && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD) cannam@95: && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW) cannam@95: && X(is_prime)(p->sz->dims[0].n) cannam@95: ); cannam@95: } cannam@95: cannam@95: static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) cannam@95: { cannam@95: const problem_dft *p; cannam@95: P *pln; cannam@95: INT n; cannam@95: cannam@95: static const plan_adt padt = { cannam@95: X(dft_solve), awake, print, X(plan_null_destroy) cannam@95: }; cannam@95: cannam@95: if (!applicable(ego, p_, plnr)) cannam@95: return (plan *)0; cannam@95: cannam@95: pln = MKPLAN_DFT(P, &padt, apply); cannam@95: cannam@95: p = (const problem_dft *) p_; cannam@95: pln->n = n = p->sz->dims[0].n; cannam@95: pln->is = p->sz->dims[0].is; cannam@95: pln->os = p->sz->dims[0].os; cannam@95: pln->td = 0; cannam@95: cannam@95: pln->super.super.ops.add = (n-1) * 5; cannam@95: pln->super.super.ops.mul = 0; cannam@95: pln->super.super.ops.fma = (n-1) * (n-1) ; cannam@95: #if 0 /* these are nice pipelined sequential loads and should cost nothing */ cannam@95: pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1)); /* approximate */ cannam@95: #endif cannam@95: cannam@95: return &(pln->super.super); cannam@95: } cannam@95: cannam@95: static solver *mksolver(void) cannam@95: { cannam@95: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; cannam@95: S *slv = MKSOLVER(S, &sadt); cannam@95: return &(slv->super); cannam@95: } cannam@95: cannam@95: void X(dft_generic_register)(planner *p) cannam@95: { cannam@95: REGISTER_SOLVER(p, mksolver()); cannam@95: }