Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: #include "dft.h" Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_dft super; Chris@10: twid *td; Chris@10: INT n, is, os; Chris@10: } P; Chris@10: Chris@10: Chris@10: static void cdot(INT n, const E *x, const R *w, Chris@10: R *or0, R *oi0, R *or1, R *oi1) Chris@10: { Chris@10: INT i; Chris@10: Chris@10: E rr = x[0], ri = 0, ir = x[1], ii = 0; Chris@10: x += 2; Chris@10: for (i = 1; i + i < n; ++i) { Chris@10: rr += x[0] * w[0]; Chris@10: ir += x[1] * w[0]; Chris@10: ri += x[2] * w[1]; Chris@10: ii += x[3] * w[1]; Chris@10: x += 4; w += 2; Chris@10: } Chris@10: *or0 = rr + ii; Chris@10: *oi0 = ir - ri; Chris@10: *or1 = rr - ii; Chris@10: *oi1 = ir + ri; Chris@10: } Chris@10: Chris@10: static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o, Chris@10: R *pr, R *pi) Chris@10: { Chris@10: INT i; Chris@10: E sr, si; Chris@10: o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2; Chris@10: for (i = 1; i + i < n; ++i) { Chris@10: sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]); Chris@10: si += (o[1] = xi[i * xs] + xi[(n - i) * xs]); Chris@10: o[2] = xr[i * xs] - xr[(n - i) * xs]; Chris@10: o[3] = xi[i * xs] - xi[(n - i) * xs]; Chris@10: o += 4; Chris@10: } Chris@10: *pr = sr; Chris@10: *pi = si; Chris@10: } Chris@10: Chris@10: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT i; Chris@10: INT n = ego->n, is = ego->is, os = ego->os; Chris@10: const R *W = ego->td->W; Chris@10: E *buf; Chris@10: size_t bufsz = n * 2 * sizeof(E); Chris@10: Chris@10: BUF_ALLOC(E *, buf, bufsz); Chris@10: hartley(n, ri, ii, is, buf, ro, io); Chris@10: Chris@10: for (i = 1; i + i < n; ++i) { Chris@10: cdot(n, buf, W, Chris@10: ro + i * os, io + i * os, Chris@10: ro + (n - i) * os, io + (n - i) * os); Chris@10: W += n - 1; Chris@10: } Chris@10: Chris@10: BUF_FREE(buf, bufsz); Chris@10: } Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: static const tw_instr half_tw[] = { Chris@10: { TW_HALF, 1, 0 }, Chris@10: { TW_NEXT, 1, 0 } Chris@10: }; Chris@10: Chris@10: X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n, Chris@10: (ego->n - 1) / 2); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: Chris@10: p->print(p, "(dft-generic-%D)", ego->n); Chris@10: } Chris@10: Chris@10: static int applicable(const solver *ego, const problem *p_, Chris@10: const planner *plnr) Chris@10: { Chris@10: const problem_dft *p = (const problem_dft *) p_; Chris@10: UNUSED(ego); Chris@10: Chris@10: return (1 Chris@10: && p->sz->rnk == 1 Chris@10: && p->vecsz->rnk == 0 Chris@10: && (p->sz->dims[0].n % 2) == 1 Chris@10: && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD) Chris@10: && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW) Chris@10: && X(is_prime)(p->sz->dims[0].n) Chris@10: ); Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) Chris@10: { Chris@10: const problem_dft *p; Chris@10: P *pln; Chris@10: INT n; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(dft_solve), awake, print, X(plan_null_destroy) Chris@10: }; Chris@10: Chris@10: if (!applicable(ego, p_, plnr)) Chris@10: return (plan *)0; Chris@10: Chris@10: pln = MKPLAN_DFT(P, &padt, apply); Chris@10: Chris@10: p = (const problem_dft *) p_; Chris@10: pln->n = n = p->sz->dims[0].n; Chris@10: pln->is = p->sz->dims[0].is; Chris@10: pln->os = p->sz->dims[0].os; Chris@10: pln->td = 0; Chris@10: Chris@10: pln->super.super.ops.add = (n-1) * 5; Chris@10: pln->super.super.ops.mul = 0; Chris@10: pln->super.super.ops.fma = (n-1) * (n-1) ; Chris@10: #if 0 /* these are nice pipelined sequential loads and should cost nothing */ Chris@10: pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1)); /* approximate */ Chris@10: #endif Chris@10: Chris@10: return &(pln->super.super); Chris@10: } Chris@10: Chris@10: static solver *mksolver(void) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: return &(slv->super); Chris@10: } Chris@10: Chris@10: void X(dft_generic_register)(planner *p) Chris@10: { Chris@10: REGISTER_SOLVER(p, mksolver()); Chris@10: }