cannam@126: /* cannam@126: ** Copyright (c) 2002-2016, Erik de Castro Lopo cannam@126: ** All rights reserved. cannam@126: ** cannam@126: ** This code is released under 2-clause BSD license. Please see the cannam@126: ** file at : https://github.com/erikd/libsamplerate/blob/master/COPYING cannam@126: */ cannam@126: cannam@126: #include "config.h" cannam@126: cannam@126: #include "util.h" cannam@126: cannam@126: #if (HAVE_FFTW3 == 1) cannam@126: cannam@126: #include cannam@126: #include cannam@126: #include cannam@126: #include cannam@126: cannam@126: #include cannam@126: cannam@126: #define MAX_SPEC_LEN (1<<18) cannam@126: #define MAX_PEAKS 10 cannam@126: cannam@126: static void log_mag_spectrum (double *input, int len, double *magnitude) ; cannam@126: static void smooth_mag_spectrum (double *magnitude, int len) ; cannam@126: static double find_snr (const double *magnitude, int len, int expected_peaks) ; cannam@126: cannam@126: typedef struct cannam@126: { double peak ; cannam@126: int index ; cannam@126: } PEAK_DATA ; cannam@126: cannam@126: double cannam@126: calculate_snr (float *data, int len, int expected_peaks) cannam@126: { static double magnitude [MAX_SPEC_LEN] ; cannam@126: static double datacopy [MAX_SPEC_LEN] ; cannam@126: cannam@126: double snr = 200.0 ; cannam@126: int k ; cannam@126: cannam@126: if (len > MAX_SPEC_LEN) cannam@126: { printf ("%s : line %d : data length too large.\n", __FILE__, __LINE__) ; cannam@126: exit (1) ; cannam@126: } ; cannam@126: cannam@126: for (k = 0 ; k < len ; k++) cannam@126: datacopy [k] = data [k] ; cannam@126: cannam@126: /* Pad the data just a little to speed up the FFT. */ cannam@126: while ((len & 0x1F) && len < MAX_SPEC_LEN) cannam@126: { datacopy [len] = 0.0 ; cannam@126: len ++ ; cannam@126: } ; cannam@126: cannam@126: log_mag_spectrum (datacopy, len, magnitude) ; cannam@126: smooth_mag_spectrum (magnitude, len / 2) ; cannam@126: cannam@126: snr = find_snr (magnitude, len, expected_peaks) ; cannam@126: cannam@126: return snr ; cannam@126: } /* calculate_snr */ cannam@126: cannam@126: /*============================================================================== cannam@126: ** There is a slight problem with trying to measure SNR with the method used cannam@126: ** here; the side lobes of the windowed FFT can look like a noise/aliasing peak. cannam@126: ** The solution is to smooth the magnitude spectrum by wiping out troughs cannam@126: ** between adjacent peaks as done here. cannam@126: ** This removes side lobe peaks without affecting noise/aliasing peaks. cannam@126: */ cannam@126: cannam@126: static void linear_smooth (double *mag, PEAK_DATA *larger, PEAK_DATA *smaller) ; cannam@126: cannam@126: static void cannam@126: smooth_mag_spectrum (double *mag, int len) cannam@126: { PEAK_DATA peaks [2] ; cannam@126: cannam@126: int k ; cannam@126: cannam@126: memset (peaks, 0, sizeof (peaks)) ; cannam@126: cannam@126: /* Find first peak. */ cannam@126: for (k = 1 ; k < len - 1 ; k++) cannam@126: { if (mag [k - 1] < mag [k] && mag [k] >= mag [k + 1]) cannam@126: { peaks [0].peak = mag [k] ; cannam@126: peaks [0].index = k ; cannam@126: break ; cannam@126: } ; cannam@126: } ; cannam@126: cannam@126: /* Find subsequent peaks ans smooth between peaks. */ cannam@126: for (k = peaks [0].index + 1 ; k < len - 1 ; k++) cannam@126: { if (mag [k - 1] < mag [k] && mag [k] >= mag [k + 1]) cannam@126: { peaks [1].peak = mag [k] ; cannam@126: peaks [1].index = k ; cannam@126: cannam@126: if (peaks [1].peak > peaks [0].peak) cannam@126: linear_smooth (mag, &peaks [1], &peaks [0]) ; cannam@126: else cannam@126: linear_smooth (mag, &peaks [0], &peaks [1]) ; cannam@126: peaks [0] = peaks [1] ; cannam@126: } ; cannam@126: } ; cannam@126: cannam@126: } /* smooth_mag_spectrum */ cannam@126: cannam@126: static void cannam@126: linear_smooth (double *mag, PEAK_DATA *larger, PEAK_DATA *smaller) cannam@126: { int k ; cannam@126: cannam@126: if (smaller->index < larger->index) cannam@126: { for (k = smaller->index + 1 ; k < larger->index ; k++) cannam@126: mag [k] = (mag [k] < mag [k - 1]) ? 0.999 * mag [k - 1] : mag [k] ; cannam@126: } cannam@126: else cannam@126: { for (k = smaller->index - 1 ; k >= larger->index ; k--) cannam@126: mag [k] = (mag [k] < mag [k + 1]) ? 0.999 * mag [k + 1] : mag [k] ; cannam@126: } ; cannam@126: cannam@126: } /* linear_smooth */ cannam@126: cannam@126: /*============================================================================== cannam@126: */ cannam@126: cannam@126: static int cannam@126: peak_compare (const void *vp1, const void *vp2) cannam@126: { const PEAK_DATA *peak1, *peak2 ; cannam@126: cannam@126: peak1 = (const PEAK_DATA*) vp1 ; cannam@126: peak2 = (const PEAK_DATA*) vp2 ; cannam@126: cannam@126: return (peak1->peak < peak2->peak) ? 1 : -1 ; cannam@126: } /* peak_compare */ cannam@126: cannam@126: static double cannam@126: find_snr (const double *magnitude, int len, int expected_peaks) cannam@126: { PEAK_DATA peaks [MAX_PEAKS] ; cannam@126: cannam@126: int k, peak_count = 0 ; cannam@126: double snr ; cannam@126: cannam@126: memset (peaks, 0, sizeof (peaks)) ; cannam@126: cannam@126: /* Find the MAX_PEAKS largest peaks. */ cannam@126: for (k = 1 ; k < len - 1 ; k++) cannam@126: { if (magnitude [k - 1] < magnitude [k] && magnitude [k] >= magnitude [k + 1]) cannam@126: { if (peak_count < MAX_PEAKS) cannam@126: { peaks [peak_count].peak = magnitude [k] ; cannam@126: peaks [peak_count].index = k ; cannam@126: peak_count ++ ; cannam@126: qsort (peaks, peak_count, sizeof (PEAK_DATA), peak_compare) ; cannam@126: } cannam@126: else if (magnitude [k] > peaks [MAX_PEAKS - 1].peak) cannam@126: { peaks [MAX_PEAKS - 1].peak = magnitude [k] ; cannam@126: peaks [MAX_PEAKS - 1].index = k ; cannam@126: qsort (peaks, MAX_PEAKS, sizeof (PEAK_DATA), peak_compare) ; cannam@126: } ; cannam@126: } ; cannam@126: } ; cannam@126: cannam@126: if (peak_count < expected_peaks) cannam@126: { printf ("\n%s : line %d : bad peak_count (%d), expected %d.\n\n", __FILE__, __LINE__, peak_count, expected_peaks) ; cannam@126: return -1.0 ; cannam@126: } ; cannam@126: cannam@126: /* Sort the peaks. */ cannam@126: qsort (peaks, peak_count, sizeof (PEAK_DATA), peak_compare) ; cannam@126: cannam@126: snr = peaks [0].peak ; cannam@126: for (k = 1 ; k < peak_count ; k++) cannam@126: if (fabs (snr - peaks [k].peak) > 10.0) cannam@126: return fabs (peaks [k].peak) ; cannam@126: cannam@126: return snr ; cannam@126: } /* find_snr */ cannam@126: cannam@126: static void cannam@126: log_mag_spectrum (double *input, int len, double *magnitude) cannam@126: { fftw_plan plan = NULL ; cannam@126: cannam@126: double maxval ; cannam@126: int k ; cannam@126: cannam@126: if (input == NULL || magnitude == NULL) cannam@126: return ; cannam@126: cannam@126: plan = fftw_plan_r2r_1d (len, input, magnitude, FFTW_R2HC, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT) ; cannam@126: if (plan == NULL) cannam@126: { printf ("%s : line %d : create plan failed.\n", __FILE__, __LINE__) ; cannam@126: exit (1) ; cannam@126: } ; cannam@126: cannam@126: fftw_execute (plan) ; cannam@126: cannam@126: fftw_destroy_plan (plan) ; cannam@126: cannam@126: maxval = 0.0 ; cannam@126: for (k = 1 ; k < len / 2 ; k++) cannam@126: { /* cannam@126: ** From : http://www.fftw.org/doc/Real_002dto_002dReal-Transform-Kinds.html#Real_002dto_002dReal-Transform-Kinds cannam@126: ** cannam@126: ** FFTW_R2HC computes a real-input DFT with output in “halfcomplex” format, i.e. real and imaginary parts cannam@126: ** for a transform of size n stored as: cannam@126: ** cannam@126: ** r0, r1, r2, ..., rn/2, i(n+1)/2-1, ..., i2, i1 cannam@126: */ cannam@126: double re = magnitude [k] ; cannam@126: double im = magnitude [len - k] ; cannam@126: magnitude [k] = sqrt (re * re + im * im) ; cannam@126: maxval = (maxval < magnitude [k]) ? magnitude [k] : maxval ; cannam@126: } ; cannam@126: cannam@126: memset (magnitude + len / 2, 0, len / 2 * sizeof (magnitude [0])) ; cannam@126: cannam@126: /* Don't care about DC component. Make it zero. */ cannam@126: magnitude [0] = 0.0 ; cannam@126: cannam@126: /* log magnitude. */ cannam@126: for (k = 0 ; k < len ; k++) cannam@126: { magnitude [k] = magnitude [k] / maxval ; cannam@126: magnitude [k] = (magnitude [k] < 1e-15) ? -200.0 : 20.0 * log10 (magnitude [k]) ; cannam@126: } ; cannam@126: cannam@126: return ; cannam@126: } /* log_mag_spectrum */ cannam@126: cannam@126: #else /* ! (HAVE_LIBFFTW && HAVE_LIBRFFTW) */ cannam@126: cannam@126: double cannam@126: calculate_snr (float *data, int len, int expected_peaks) cannam@126: { double snr = 200.0 ; cannam@126: cannam@126: data = data ; cannam@126: len = len ; cannam@126: expected_peaks = expected_peaks ; cannam@126: cannam@126: return snr ; cannam@126: } /* calculate_snr */ cannam@126: cannam@126: #endif cannam@126: