Chris@10: /**************************************************************************/ Chris@10: /* NOTE to users: this is the FFTW self-test and benchmark program. Chris@10: It is probably NOT a good place to learn FFTW usage, since it has a Chris@10: lot of added complexity in order to exercise and test the full API, Chris@10: etcetera. We suggest reading the manual. Chris@10: Chris@10: (Some of the self-test code is split off into fftw-bench.c and Chris@10: hook.c.) */ Chris@10: /**************************************************************************/ Chris@10: Chris@10: #include Chris@10: #include Chris@10: #include Chris@10: #include "fftw-bench.h" Chris@10: Chris@10: static const char *mkversion(void) { return FFTW(version); } Chris@10: static const char *mkcc(void) { return FFTW(cc); } Chris@10: static const char *mkcodelet_optim(void) { return FFTW(codelet_optim); } Chris@10: Chris@10: BEGIN_BENCH_DOC Chris@10: BENCH_DOC("name", "fftw3") Chris@10: BENCH_DOCF("version", mkversion) Chris@10: BENCH_DOCF("cc", mkcc) Chris@10: BENCH_DOCF("codelet-optim", mkcodelet_optim) Chris@10: END_BENCH_DOC Chris@10: Chris@10: static FFTW(iodim) *bench_tensor_to_fftw_iodim(bench_tensor *t) Chris@10: { Chris@10: FFTW(iodim) *d; Chris@10: int i; Chris@10: Chris@10: BENCH_ASSERT(t->rnk >= 0); Chris@10: if (t->rnk == 0) return 0; Chris@10: Chris@10: d = (FFTW(iodim) *)bench_malloc(sizeof(FFTW(iodim)) * t->rnk); Chris@10: for (i = 0; i < t->rnk; ++i) { Chris@10: d[i].n = t->dims[i].n; Chris@10: d[i].is = t->dims[i].is; Chris@10: d[i].os = t->dims[i].os; Chris@10: } Chris@10: Chris@10: return d; Chris@10: } Chris@10: Chris@10: static void extract_reim_split(int sign, int size, bench_real *p, Chris@10: bench_real **r, bench_real **i) Chris@10: { Chris@10: if (sign == FFTW_FORWARD) { Chris@10: *r = p + 0; Chris@10: *i = p + size; Chris@10: } else { Chris@10: *r = p + size; Chris@10: *i = p + 0; Chris@10: } Chris@10: } Chris@10: Chris@10: static int sizeof_problem(bench_problem *p) Chris@10: { Chris@10: return tensor_sz(p->sz) * tensor_sz(p->vecsz); Chris@10: } Chris@10: Chris@10: /* ouch */ Chris@10: static int expressible_as_api_many(bench_tensor *t) Chris@10: { Chris@10: int i; Chris@10: Chris@10: BENCH_ASSERT(FINITE_RNK(t->rnk)); Chris@10: Chris@10: i = t->rnk - 1; Chris@10: while (--i >= 0) { Chris@10: bench_iodim *d = t->dims + i; Chris@10: if (d[0].is % d[1].is) return 0; Chris@10: if (d[0].os % d[1].os) return 0; Chris@10: } Chris@10: return 1; Chris@10: } Chris@10: Chris@10: static int *mkn(bench_tensor *t) Chris@10: { Chris@10: int *n = (int *) bench_malloc(sizeof(int *) * t->rnk); Chris@10: int i; Chris@10: for (i = 0; i < t->rnk; ++i) Chris@10: n[i] = t->dims[i].n; Chris@10: return n; Chris@10: } Chris@10: Chris@10: static void mknembed_many(bench_tensor *t, int **inembedp, int **onembedp) Chris@10: { Chris@10: int i; Chris@10: bench_iodim *d; Chris@10: int *inembed = (int *) bench_malloc(sizeof(int *) * t->rnk); Chris@10: int *onembed = (int *) bench_malloc(sizeof(int *) * t->rnk); Chris@10: Chris@10: BENCH_ASSERT(FINITE_RNK(t->rnk)); Chris@10: *inembedp = inembed; *onembedp = onembed; Chris@10: Chris@10: i = t->rnk - 1; Chris@10: while (--i >= 0) { Chris@10: d = t->dims + i; Chris@10: inembed[i+1] = d[0].is / d[1].is; Chris@10: onembed[i+1] = d[0].os / d[1].os; Chris@10: } Chris@10: } Chris@10: Chris@10: /* try to use the most appropriate API function. Big mess. */ Chris@10: Chris@10: static int imax(int a, int b) { return (a > b ? a : b); } Chris@10: Chris@10: static int halfish_sizeof_problem(bench_problem *p) Chris@10: { Chris@10: int n2 = sizeof_problem(p); Chris@10: if (FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0) Chris@10: n2 = (n2 / imax(p->sz->dims[p->sz->rnk - 1].n, 1)) * Chris@10: (p->sz->dims[p->sz->rnk - 1].n / 2 + 1); Chris@10: return n2; Chris@10: } Chris@10: Chris@10: static FFTW(plan) mkplan_real_split(bench_problem *p, unsigned flags) Chris@10: { Chris@10: FFTW(plan) pln; Chris@10: bench_tensor *sz = p->sz, *vecsz = p->vecsz; Chris@10: FFTW(iodim) *dims, *howmany_dims; Chris@10: bench_real *ri, *ii, *ro, *io; Chris@10: int n2 = halfish_sizeof_problem(p); Chris@10: Chris@10: extract_reim_split(FFTW_FORWARD, n2, (bench_real *) p->in, &ri, &ii); Chris@10: extract_reim_split(FFTW_FORWARD, n2, (bench_real *) p->out, &ro, &io); Chris@10: Chris@10: dims = bench_tensor_to_fftw_iodim(sz); Chris@10: howmany_dims = bench_tensor_to_fftw_iodim(vecsz); Chris@10: if (p->sign < 0) { Chris@10: if (verbose > 2) printf("using plan_guru_split_dft_r2c\n"); Chris@10: pln = FFTW(plan_guru_split_dft_r2c)(sz->rnk, dims, Chris@10: vecsz->rnk, howmany_dims, Chris@10: ri, ro, io, flags); Chris@10: } Chris@10: else { Chris@10: if (verbose > 2) printf("using plan_guru_split_dft_c2r\n"); Chris@10: pln = FFTW(plan_guru_split_dft_c2r)(sz->rnk, dims, Chris@10: vecsz->rnk, howmany_dims, Chris@10: ri, ii, ro, flags); Chris@10: } Chris@10: bench_free(dims); Chris@10: bench_free(howmany_dims); Chris@10: return pln; Chris@10: } Chris@10: Chris@10: static FFTW(plan) mkplan_real_interleaved(bench_problem *p, unsigned flags) Chris@10: { Chris@10: FFTW(plan) pln; Chris@10: bench_tensor *sz = p->sz, *vecsz = p->vecsz; Chris@10: Chris@10: if (vecsz->rnk == 0 && tensor_unitstridep(sz) Chris@10: && tensor_real_rowmajorp(sz, p->sign, p->in_place)) Chris@10: goto api_simple; Chris@10: Chris@10: if (vecsz->rnk == 1 && expressible_as_api_many(sz)) Chris@10: goto api_many; Chris@10: Chris@10: goto api_guru; Chris@10: Chris@10: api_simple: Chris@10: switch (sz->rnk) { Chris@10: case 1: Chris@10: if (p->sign < 0) { Chris@10: if (verbose > 2) printf("using plan_dft_r2c_1d\n"); Chris@10: return FFTW(plan_dft_r2c_1d)(sz->dims[0].n, Chris@10: (bench_real *) p->in, Chris@10: (bench_complex *) p->out, Chris@10: flags); Chris@10: } Chris@10: else { Chris@10: if (verbose > 2) printf("using plan_dft_c2r_1d\n"); Chris@10: return FFTW(plan_dft_c2r_1d)(sz->dims[0].n, Chris@10: (bench_complex *) p->in, Chris@10: (bench_real *) p->out, Chris@10: flags); Chris@10: } Chris@10: break; Chris@10: case 2: Chris@10: if (p->sign < 0) { Chris@10: if (verbose > 2) printf("using plan_dft_r2c_2d\n"); Chris@10: return FFTW(plan_dft_r2c_2d)(sz->dims[0].n, sz->dims[1].n, Chris@10: (bench_real *) p->in, Chris@10: (bench_complex *) p->out, Chris@10: flags); Chris@10: } Chris@10: else { Chris@10: if (verbose > 2) printf("using plan_dft_c2r_2d\n"); Chris@10: return FFTW(plan_dft_c2r_2d)(sz->dims[0].n, sz->dims[1].n, Chris@10: (bench_complex *) p->in, Chris@10: (bench_real *) p->out, Chris@10: flags); Chris@10: } Chris@10: break; Chris@10: case 3: Chris@10: if (p->sign < 0) { Chris@10: if (verbose > 2) printf("using plan_dft_r2c_3d\n"); Chris@10: return FFTW(plan_dft_r2c_3d)( Chris@10: sz->dims[0].n, sz->dims[1].n, sz->dims[2].n, Chris@10: (bench_real *) p->in, (bench_complex *) p->out, Chris@10: flags); Chris@10: } Chris@10: else { Chris@10: if (verbose > 2) printf("using plan_dft_c2r_3d\n"); Chris@10: return FFTW(plan_dft_c2r_3d)( Chris@10: sz->dims[0].n, sz->dims[1].n, sz->dims[2].n, Chris@10: (bench_complex *) p->in, (bench_real *) p->out, Chris@10: flags); Chris@10: } Chris@10: break; Chris@10: default: { Chris@10: int *n = mkn(sz); Chris@10: if (p->sign < 0) { Chris@10: if (verbose > 2) printf("using plan_dft_r2c\n"); Chris@10: pln = FFTW(plan_dft_r2c)(sz->rnk, n, Chris@10: (bench_real *) p->in, Chris@10: (bench_complex *) p->out, Chris@10: flags); Chris@10: } Chris@10: else { Chris@10: if (verbose > 2) printf("using plan_dft_c2r\n"); Chris@10: pln = FFTW(plan_dft_c2r)(sz->rnk, n, Chris@10: (bench_complex *) p->in, Chris@10: (bench_real *) p->out, Chris@10: flags); Chris@10: } Chris@10: bench_free(n); Chris@10: return pln; Chris@10: } Chris@10: } Chris@10: Chris@10: api_many: Chris@10: { Chris@10: int *n, *inembed, *onembed; Chris@10: BENCH_ASSERT(vecsz->rnk == 1); Chris@10: n = mkn(sz); Chris@10: mknembed_many(sz, &inembed, &onembed); Chris@10: if (p->sign < 0) { Chris@10: if (verbose > 2) printf("using plan_many_dft_r2c\n"); Chris@10: pln = FFTW(plan_many_dft_r2c)( Chris@10: sz->rnk, n, vecsz->dims[0].n, Chris@10: (bench_real *) p->in, inembed, Chris@10: sz->dims[sz->rnk - 1].is, vecsz->dims[0].is, Chris@10: (bench_complex *) p->out, onembed, Chris@10: sz->dims[sz->rnk - 1].os, vecsz->dims[0].os, Chris@10: flags); Chris@10: } Chris@10: else { Chris@10: if (verbose > 2) printf("using plan_many_dft_c2r\n"); Chris@10: pln = FFTW(plan_many_dft_c2r)( Chris@10: sz->rnk, n, vecsz->dims[0].n, Chris@10: (bench_complex *) p->in, inembed, Chris@10: sz->dims[sz->rnk - 1].is, vecsz->dims[0].is, Chris@10: (bench_real *) p->out, onembed, Chris@10: sz->dims[sz->rnk - 1].os, vecsz->dims[0].os, Chris@10: flags); Chris@10: } Chris@10: bench_free(n); bench_free(inembed); bench_free(onembed); Chris@10: return pln; Chris@10: } Chris@10: Chris@10: api_guru: Chris@10: { Chris@10: FFTW(iodim) *dims, *howmany_dims; Chris@10: Chris@10: if (p->sign < 0) { Chris@10: dims = bench_tensor_to_fftw_iodim(sz); Chris@10: howmany_dims = bench_tensor_to_fftw_iodim(vecsz); Chris@10: if (verbose > 2) printf("using plan_guru_dft_r2c\n"); Chris@10: pln = FFTW(plan_guru_dft_r2c)(sz->rnk, dims, Chris@10: vecsz->rnk, howmany_dims, Chris@10: (bench_real *) p->in, Chris@10: (bench_complex *) p->out, Chris@10: flags); Chris@10: } Chris@10: else { Chris@10: dims = bench_tensor_to_fftw_iodim(sz); Chris@10: howmany_dims = bench_tensor_to_fftw_iodim(vecsz); Chris@10: if (verbose > 2) printf("using plan_guru_dft_c2r\n"); Chris@10: pln = FFTW(plan_guru_dft_c2r)(sz->rnk, dims, Chris@10: vecsz->rnk, howmany_dims, Chris@10: (bench_complex *) p->in, Chris@10: (bench_real *) p->out, Chris@10: flags); Chris@10: } Chris@10: bench_free(dims); Chris@10: bench_free(howmany_dims); Chris@10: return pln; Chris@10: } Chris@10: } Chris@10: Chris@10: static FFTW(plan) mkplan_real(bench_problem *p, unsigned flags) Chris@10: { Chris@10: if (p->split) Chris@10: return mkplan_real_split(p, flags); Chris@10: else Chris@10: return mkplan_real_interleaved(p, flags); Chris@10: } Chris@10: Chris@10: static FFTW(plan) mkplan_complex_split(bench_problem *p, unsigned flags) Chris@10: { Chris@10: FFTW(plan) pln; Chris@10: bench_tensor *sz = p->sz, *vecsz = p->vecsz; Chris@10: FFTW(iodim) *dims, *howmany_dims; Chris@10: bench_real *ri, *ii, *ro, *io; Chris@10: Chris@10: extract_reim_split(p->sign, p->iphyssz, (bench_real *) p->in, &ri, &ii); Chris@10: extract_reim_split(p->sign, p->ophyssz, (bench_real *) p->out, &ro, &io); Chris@10: Chris@10: dims = bench_tensor_to_fftw_iodim(sz); Chris@10: howmany_dims = bench_tensor_to_fftw_iodim(vecsz); Chris@10: if (verbose > 2) printf("using plan_guru_split_dft\n"); Chris@10: pln = FFTW(plan_guru_split_dft)(sz->rnk, dims, Chris@10: vecsz->rnk, howmany_dims, Chris@10: ri, ii, ro, io, flags); Chris@10: bench_free(dims); Chris@10: bench_free(howmany_dims); Chris@10: return pln; Chris@10: } Chris@10: Chris@10: static FFTW(plan) mkplan_complex_interleaved(bench_problem *p, unsigned flags) Chris@10: { Chris@10: FFTW(plan) pln; Chris@10: bench_tensor *sz = p->sz, *vecsz = p->vecsz; Chris@10: Chris@10: if (vecsz->rnk == 0 && tensor_unitstridep(sz) && tensor_rowmajorp(sz)) Chris@10: goto api_simple; Chris@10: Chris@10: if (vecsz->rnk == 1 && expressible_as_api_many(sz)) Chris@10: goto api_many; Chris@10: Chris@10: goto api_guru; Chris@10: Chris@10: api_simple: Chris@10: switch (sz->rnk) { Chris@10: case 1: Chris@10: if (verbose > 2) printf("using plan_dft_1d\n"); Chris@10: return FFTW(plan_dft_1d)(sz->dims[0].n, Chris@10: (bench_complex *) p->in, Chris@10: (bench_complex *) p->out, Chris@10: p->sign, flags); Chris@10: break; Chris@10: case 2: Chris@10: if (verbose > 2) printf("using plan_dft_2d\n"); Chris@10: return FFTW(plan_dft_2d)(sz->dims[0].n, sz->dims[1].n, Chris@10: (bench_complex *) p->in, Chris@10: (bench_complex *) p->out, Chris@10: p->sign, flags); Chris@10: break; Chris@10: case 3: Chris@10: if (verbose > 2) printf("using plan_dft_3d\n"); Chris@10: return FFTW(plan_dft_3d)( Chris@10: sz->dims[0].n, sz->dims[1].n, sz->dims[2].n, Chris@10: (bench_complex *) p->in, (bench_complex *) p->out, Chris@10: p->sign, flags); Chris@10: break; Chris@10: default: { Chris@10: int *n = mkn(sz); Chris@10: if (verbose > 2) printf("using plan_dft\n"); Chris@10: pln = FFTW(plan_dft)(sz->rnk, n, Chris@10: (bench_complex *) p->in, Chris@10: (bench_complex *) p->out, p->sign, flags); Chris@10: bench_free(n); Chris@10: return pln; Chris@10: } Chris@10: } Chris@10: Chris@10: api_many: Chris@10: { Chris@10: int *n, *inembed, *onembed; Chris@10: BENCH_ASSERT(vecsz->rnk == 1); Chris@10: n = mkn(sz); Chris@10: mknembed_many(sz, &inembed, &onembed); Chris@10: if (verbose > 2) printf("using plan_many_dft\n"); Chris@10: pln = FFTW(plan_many_dft)( Chris@10: sz->rnk, n, vecsz->dims[0].n, Chris@10: (bench_complex *) p->in, Chris@10: inembed, sz->dims[sz->rnk - 1].is, vecsz->dims[0].is, Chris@10: (bench_complex *) p->out, Chris@10: onembed, sz->dims[sz->rnk - 1].os, vecsz->dims[0].os, Chris@10: p->sign, flags); Chris@10: bench_free(n); bench_free(inembed); bench_free(onembed); Chris@10: return pln; Chris@10: } Chris@10: Chris@10: api_guru: Chris@10: { Chris@10: FFTW(iodim) *dims, *howmany_dims; Chris@10: Chris@10: dims = bench_tensor_to_fftw_iodim(sz); Chris@10: howmany_dims = bench_tensor_to_fftw_iodim(vecsz); Chris@10: if (verbose > 2) printf("using plan_guru_dft\n"); Chris@10: pln = FFTW(plan_guru_dft)(sz->rnk, dims, Chris@10: vecsz->rnk, howmany_dims, Chris@10: (bench_complex *) p->in, Chris@10: (bench_complex *) p->out, Chris@10: p->sign, flags); Chris@10: bench_free(dims); Chris@10: bench_free(howmany_dims); Chris@10: return pln; Chris@10: } Chris@10: } Chris@10: Chris@10: static FFTW(plan) mkplan_complex(bench_problem *p, unsigned flags) Chris@10: { Chris@10: if (p->split) Chris@10: return mkplan_complex_split(p, flags); Chris@10: else Chris@10: return mkplan_complex_interleaved(p, flags); Chris@10: } Chris@10: Chris@10: static FFTW(plan) mkplan_r2r(bench_problem *p, unsigned flags) Chris@10: { Chris@10: FFTW(plan) pln; Chris@10: bench_tensor *sz = p->sz, *vecsz = p->vecsz; Chris@10: FFTW(r2r_kind) *k; Chris@10: Chris@10: k = (FFTW(r2r_kind) *) bench_malloc(sizeof(FFTW(r2r_kind)) * sz->rnk); Chris@10: { Chris@10: int i; Chris@10: for (i = 0; i < sz->rnk; ++i) Chris@10: switch (p->k[i]) { Chris@10: case R2R_R2HC: k[i] = FFTW_R2HC; break; Chris@10: case R2R_HC2R: k[i] = FFTW_HC2R; break; Chris@10: case R2R_DHT: k[i] = FFTW_DHT; break; Chris@10: case R2R_REDFT00: k[i] = FFTW_REDFT00; break; Chris@10: case R2R_REDFT01: k[i] = FFTW_REDFT01; break; Chris@10: case R2R_REDFT10: k[i] = FFTW_REDFT10; break; Chris@10: case R2R_REDFT11: k[i] = FFTW_REDFT11; break; Chris@10: case R2R_RODFT00: k[i] = FFTW_RODFT00; break; Chris@10: case R2R_RODFT01: k[i] = FFTW_RODFT01; break; Chris@10: case R2R_RODFT10: k[i] = FFTW_RODFT10; break; Chris@10: case R2R_RODFT11: k[i] = FFTW_RODFT11; break; Chris@10: default: BENCH_ASSERT(0); Chris@10: } Chris@10: } Chris@10: Chris@10: if (vecsz->rnk == 0 && tensor_unitstridep(sz) && tensor_rowmajorp(sz)) Chris@10: goto api_simple; Chris@10: Chris@10: if (vecsz->rnk == 1 && expressible_as_api_many(sz)) Chris@10: goto api_many; Chris@10: Chris@10: goto api_guru; Chris@10: Chris@10: api_simple: Chris@10: switch (sz->rnk) { Chris@10: case 1: Chris@10: if (verbose > 2) printf("using plan_r2r_1d\n"); Chris@10: pln = FFTW(plan_r2r_1d)(sz->dims[0].n, Chris@10: (bench_real *) p->in, Chris@10: (bench_real *) p->out, Chris@10: k[0], flags); Chris@10: goto done; Chris@10: case 2: Chris@10: if (verbose > 2) printf("using plan_r2r_2d\n"); Chris@10: pln = FFTW(plan_r2r_2d)(sz->dims[0].n, sz->dims[1].n, Chris@10: (bench_real *) p->in, Chris@10: (bench_real *) p->out, Chris@10: k[0], k[1], flags); Chris@10: goto done; Chris@10: case 3: Chris@10: if (verbose > 2) printf("using plan_r2r_3d\n"); Chris@10: pln = FFTW(plan_r2r_3d)( Chris@10: sz->dims[0].n, sz->dims[1].n, sz->dims[2].n, Chris@10: (bench_real *) p->in, (bench_real *) p->out, Chris@10: k[0], k[1], k[2], flags); Chris@10: goto done; Chris@10: default: { Chris@10: int *n = mkn(sz); Chris@10: if (verbose > 2) printf("using plan_r2r\n"); Chris@10: pln = FFTW(plan_r2r)(sz->rnk, n, Chris@10: (bench_real *) p->in, (bench_real *) p->out, Chris@10: k, flags); Chris@10: bench_free(n); Chris@10: goto done; Chris@10: } Chris@10: } Chris@10: Chris@10: api_many: Chris@10: { Chris@10: int *n, *inembed, *onembed; Chris@10: BENCH_ASSERT(vecsz->rnk == 1); Chris@10: n = mkn(sz); Chris@10: mknembed_many(sz, &inembed, &onembed); Chris@10: if (verbose > 2) printf("using plan_many_r2r\n"); Chris@10: pln = FFTW(plan_many_r2r)( Chris@10: sz->rnk, n, vecsz->dims[0].n, Chris@10: (bench_real *) p->in, Chris@10: inembed, sz->dims[sz->rnk - 1].is, vecsz->dims[0].is, Chris@10: (bench_real *) p->out, Chris@10: onembed, sz->dims[sz->rnk - 1].os, vecsz->dims[0].os, Chris@10: k, flags); Chris@10: bench_free(n); bench_free(inembed); bench_free(onembed); Chris@10: goto done; Chris@10: } Chris@10: Chris@10: api_guru: Chris@10: { Chris@10: FFTW(iodim) *dims, *howmany_dims; Chris@10: Chris@10: dims = bench_tensor_to_fftw_iodim(sz); Chris@10: howmany_dims = bench_tensor_to_fftw_iodim(vecsz); Chris@10: if (verbose > 2) printf("using plan_guru_r2r\n"); Chris@10: pln = FFTW(plan_guru_r2r)(sz->rnk, dims, Chris@10: vecsz->rnk, howmany_dims, Chris@10: (bench_real *) p->in, Chris@10: (bench_real *) p->out, k, flags); Chris@10: bench_free(dims); Chris@10: bench_free(howmany_dims); Chris@10: goto done; Chris@10: } Chris@10: Chris@10: done: Chris@10: bench_free(k); Chris@10: return pln; Chris@10: } Chris@10: Chris@10: FFTW(plan) mkplan(bench_problem *p, unsigned flags) Chris@10: { Chris@10: switch (p->kind) { Chris@10: case PROBLEM_COMPLEX: return mkplan_complex(p, flags); Chris@10: case PROBLEM_REAL: return mkplan_real(p, flags); Chris@10: case PROBLEM_R2R: return mkplan_r2r(p, flags); Chris@10: default: BENCH_ASSERT(0); return 0; Chris@10: } Chris@10: } Chris@10: Chris@10: void main_init(int *argc, char ***argv) Chris@10: { Chris@10: UNUSED(argc); Chris@10: UNUSED(argv); Chris@10: } Chris@10: Chris@10: void initial_cleanup(void) Chris@10: { Chris@10: } Chris@10: Chris@10: void final_cleanup(void) Chris@10: { Chris@10: } Chris@10: Chris@10: int import_wisdom(FILE *f) Chris@10: { Chris@10: return FFTW(import_wisdom_from_file)(f); Chris@10: } Chris@10: Chris@10: void export_wisdom(FILE *f) Chris@10: { Chris@10: FFTW(export_wisdom_to_file)(f); Chris@10: }