cannam@148: // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors cannam@148: // Licensed under the MIT License: cannam@148: // cannam@148: // Permission is hereby granted, free of charge, to any person obtaining a copy cannam@148: // of this software and associated documentation files (the "Software"), to deal cannam@148: // in the Software without restriction, including without limitation the rights cannam@148: // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cannam@148: // copies of the Software, and to permit persons to whom the Software is cannam@148: // furnished to do so, subject to the following conditions: cannam@148: // cannam@148: // The above copyright notice and this permission notice shall be included in cannam@148: // all copies or substantial portions of the Software. cannam@148: // cannam@148: // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR cannam@148: // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, cannam@148: // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE cannam@148: // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER cannam@148: // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, cannam@148: // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN cannam@148: // THE SOFTWARE. cannam@148: cannam@148: #ifndef KJ_MUTEX_H_ cannam@148: #define KJ_MUTEX_H_ cannam@148: cannam@148: #if defined(__GNUC__) && !KJ_HEADER_WARNINGS cannam@148: #pragma GCC system_header cannam@148: #endif cannam@148: cannam@148: #include "memory.h" cannam@148: #include cannam@148: cannam@148: #if __linux__ && !defined(KJ_USE_FUTEX) cannam@148: #define KJ_USE_FUTEX 1 cannam@148: #endif cannam@148: cannam@148: #if !KJ_USE_FUTEX && !_WIN32 cannam@148: // On Linux we use futex. On other platforms we wrap pthreads. cannam@148: // TODO(someday): Write efficient low-level locking primitives for other platforms. cannam@148: #include cannam@148: #endif cannam@148: cannam@148: namespace kj { cannam@148: cannam@148: // ======================================================================================= cannam@148: // Private details -- public interfaces follow below. cannam@148: cannam@148: namespace _ { // private cannam@148: cannam@148: class Mutex { cannam@148: // Internal implementation details. See `MutexGuarded`. cannam@148: cannam@148: public: cannam@148: Mutex(); cannam@148: ~Mutex(); cannam@148: KJ_DISALLOW_COPY(Mutex); cannam@148: cannam@148: enum Exclusivity { cannam@148: EXCLUSIVE, cannam@148: SHARED cannam@148: }; cannam@148: cannam@148: void lock(Exclusivity exclusivity); cannam@148: void unlock(Exclusivity exclusivity); cannam@148: cannam@148: void assertLockedByCaller(Exclusivity exclusivity); cannam@148: // In debug mode, assert that the mutex is locked by the calling thread, or if that is cannam@148: // non-trivial, assert that the mutex is locked (which should be good enough to catch problems cannam@148: // in unit tests). In non-debug builds, do nothing. cannam@148: cannam@148: private: cannam@148: #if KJ_USE_FUTEX cannam@148: uint futex; cannam@148: // bit 31 (msb) = set if exclusive lock held cannam@148: // bit 30 (msb) = set if threads are waiting for exclusive lock cannam@148: // bits 0-29 = count of readers; If an exclusive lock is held, this is the count of threads cannam@148: // waiting for a read lock, otherwise it is the count of threads that currently hold a read cannam@148: // lock. cannam@148: cannam@148: static constexpr uint EXCLUSIVE_HELD = 1u << 31; cannam@148: static constexpr uint EXCLUSIVE_REQUESTED = 1u << 30; cannam@148: static constexpr uint SHARED_COUNT_MASK = EXCLUSIVE_REQUESTED - 1; cannam@148: cannam@148: #elif _WIN32 cannam@148: uintptr_t srwLock; // Actually an SRWLOCK, but don't want to #include in header. cannam@148: cannam@148: #else cannam@148: mutable pthread_rwlock_t mutex; cannam@148: #endif cannam@148: }; cannam@148: cannam@148: class Once { cannam@148: // Internal implementation details. See `Lazy`. cannam@148: cannam@148: public: cannam@148: #if KJ_USE_FUTEX cannam@148: inline Once(bool startInitialized = false) cannam@148: : futex(startInitialized ? INITIALIZED : UNINITIALIZED) {} cannam@148: #else cannam@148: Once(bool startInitialized = false); cannam@148: ~Once(); cannam@148: #endif cannam@148: KJ_DISALLOW_COPY(Once); cannam@148: cannam@148: class Initializer { cannam@148: public: cannam@148: virtual void run() = 0; cannam@148: }; cannam@148: cannam@148: void runOnce(Initializer& init); cannam@148: cannam@148: #if _WIN32 // TODO(perf): Can we make this inline on win32 somehow? cannam@148: bool isInitialized() noexcept; cannam@148: cannam@148: #else cannam@148: inline bool isInitialized() noexcept { cannam@148: // Fast path check to see if runOnce() would simply return immediately. cannam@148: #if KJ_USE_FUTEX cannam@148: return __atomic_load_n(&futex, __ATOMIC_ACQUIRE) == INITIALIZED; cannam@148: #else cannam@148: return __atomic_load_n(&state, __ATOMIC_ACQUIRE) == INITIALIZED; cannam@148: #endif cannam@148: } cannam@148: #endif cannam@148: cannam@148: void reset(); cannam@148: // Returns the state from initialized to uninitialized. It is an error to call this when cannam@148: // not already initialized, or when runOnce() or isInitialized() might be called concurrently in cannam@148: // another thread. cannam@148: cannam@148: private: cannam@148: #if KJ_USE_FUTEX cannam@148: uint futex; cannam@148: cannam@148: enum State { cannam@148: UNINITIALIZED, cannam@148: INITIALIZING, cannam@148: INITIALIZING_WITH_WAITERS, cannam@148: INITIALIZED cannam@148: }; cannam@148: cannam@148: #elif _WIN32 cannam@148: uintptr_t initOnce; // Actually an INIT_ONCE, but don't want to #include in header. cannam@148: cannam@148: #else cannam@148: enum State { cannam@148: UNINITIALIZED, cannam@148: INITIALIZED cannam@148: }; cannam@148: State state; cannam@148: pthread_mutex_t mutex; cannam@148: #endif cannam@148: }; cannam@148: cannam@148: } // namespace _ (private) cannam@148: cannam@148: // ======================================================================================= cannam@148: // Public interface cannam@148: cannam@148: template cannam@148: class Locked { cannam@148: // Return type for `MutexGuarded::lock()`. `Locked` provides access to the bounded object cannam@148: // and unlocks the mutex when it goes out of scope. cannam@148: cannam@148: public: cannam@148: KJ_DISALLOW_COPY(Locked); cannam@148: inline Locked(): mutex(nullptr), ptr(nullptr) {} cannam@148: inline Locked(Locked&& other): mutex(other.mutex), ptr(other.ptr) { cannam@148: other.mutex = nullptr; cannam@148: other.ptr = nullptr; cannam@148: } cannam@148: inline ~Locked() { cannam@148: if (mutex != nullptr) mutex->unlock(isConst() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE); cannam@148: } cannam@148: cannam@148: inline Locked& operator=(Locked&& other) { cannam@148: if (mutex != nullptr) mutex->unlock(isConst() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE); cannam@148: mutex = other.mutex; cannam@148: ptr = other.ptr; cannam@148: other.mutex = nullptr; cannam@148: other.ptr = nullptr; cannam@148: return *this; cannam@148: } cannam@148: cannam@148: inline void release() { cannam@148: if (mutex != nullptr) mutex->unlock(isConst() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE); cannam@148: mutex = nullptr; cannam@148: ptr = nullptr; cannam@148: } cannam@148: cannam@148: inline T* operator->() { return ptr; } cannam@148: inline const T* operator->() const { return ptr; } cannam@148: inline T& operator*() { return *ptr; } cannam@148: inline const T& operator*() const { return *ptr; } cannam@148: inline T* get() { return ptr; } cannam@148: inline const T* get() const { return ptr; } cannam@148: inline operator T*() { return ptr; } cannam@148: inline operator const T*() const { return ptr; } cannam@148: cannam@148: private: cannam@148: _::Mutex* mutex; cannam@148: T* ptr; cannam@148: cannam@148: inline Locked(_::Mutex& mutex, T& value): mutex(&mutex), ptr(&value) {} cannam@148: cannam@148: template cannam@148: friend class MutexGuarded; cannam@148: }; cannam@148: cannam@148: template cannam@148: class MutexGuarded { cannam@148: // An object of type T, bounded by a mutex. In order to access the object, you must lock it. cannam@148: // cannam@148: // Write locks are not "recursive" -- trying to lock again in a thread that already holds a lock cannam@148: // will deadlock. Recursive write locks are usually a sign of bad design. cannam@148: // cannam@148: // Unfortunately, **READ LOCKS ARE NOT RECURSIVE** either. Common sense says they should be. cannam@148: // But on many operating systems (BSD, OSX), recursively read-locking a pthread_rwlock is cannam@148: // actually unsafe. The problem is that writers are "prioritized" over readers, so a read lock cannam@148: // request will block if any write lock requests are outstanding. So, if thread A takes a read cannam@148: // lock, thread B requests a write lock (and starts waiting), and then thread A tries to take cannam@148: // another read lock recursively, the result is deadlock. cannam@148: cannam@148: public: cannam@148: template cannam@148: explicit MutexGuarded(Params&&... params); cannam@148: // Initialize the mutex-bounded object by passing the given parameters to its constructor. cannam@148: cannam@148: Locked lockExclusive() const; cannam@148: // Exclusively locks the object and returns it. The returned `Locked` can be passed by cannam@148: // move, similar to `Own`. cannam@148: // cannam@148: // This method is declared `const` in accordance with KJ style rules which say that constness cannam@148: // should be used to indicate thread-safety. It is safe to share a const pointer between threads, cannam@148: // but it is not safe to share a mutable pointer. Since the whole point of MutexGuarded is to cannam@148: // be shared between threads, its methods should be const, even though locking it produces a cannam@148: // non-const pointer to the contained object. cannam@148: cannam@148: Locked lockShared() const; cannam@148: // Lock the value for shared access. Multiple shared locks can be taken concurrently, but cannot cannam@148: // be held at the same time as a non-shared lock. cannam@148: cannam@148: inline const T& getWithoutLock() const { return value; } cannam@148: inline T& getWithoutLock() { return value; } cannam@148: // Escape hatch for cases where some external factor guarantees that it's safe to get the cannam@148: // value. You should treat these like const_cast -- be highly suspicious of any use. cannam@148: cannam@148: inline const T& getAlreadyLockedShared() const; cannam@148: inline T& getAlreadyLockedShared(); cannam@148: inline T& getAlreadyLockedExclusive() const; cannam@148: // Like `getWithoutLock()`, but asserts that the lock is already held by the calling thread. cannam@148: cannam@148: private: cannam@148: mutable _::Mutex mutex; cannam@148: mutable T value; cannam@148: }; cannam@148: cannam@148: template cannam@148: class MutexGuarded { cannam@148: // MutexGuarded cannot guard a const type. This would be pointless anyway, and would complicate cannam@148: // the implementation of Locked, which uses constness to decide what kind of lock it holds. cannam@148: static_assert(sizeof(T) < 0, "MutexGuarded's type cannot be const."); cannam@148: }; cannam@148: cannam@148: template cannam@148: class Lazy { cannam@148: // A lazily-initialized value. cannam@148: cannam@148: public: cannam@148: template cannam@148: T& get(Func&& init); cannam@148: template cannam@148: const T& get(Func&& init) const; cannam@148: // The first thread to call get() will invoke the given init function to construct the value. cannam@148: // Other threads will block until construction completes, then return the same value. cannam@148: // cannam@148: // `init` is a functor(typically a lambda) which takes `SpaceFor&` as its parameter and returns cannam@148: // `Own`. If `init` throws an exception, the exception is propagated out of that thread's cannam@148: // call to `get()`, and subsequent calls behave as if `get()` hadn't been called at all yet -- cannam@148: // in other words, subsequent calls retry initialization until it succeeds. cannam@148: cannam@148: private: cannam@148: mutable _::Once once; cannam@148: mutable SpaceFor space; cannam@148: mutable Own value; cannam@148: cannam@148: template cannam@148: class InitImpl; cannam@148: }; cannam@148: cannam@148: // ======================================================================================= cannam@148: // Inline implementation details cannam@148: cannam@148: template cannam@148: template cannam@148: inline MutexGuarded::MutexGuarded(Params&&... params) cannam@148: : value(kj::fwd(params)...) {} cannam@148: cannam@148: template cannam@148: inline Locked MutexGuarded::lockExclusive() const { cannam@148: mutex.lock(_::Mutex::EXCLUSIVE); cannam@148: return Locked(mutex, value); cannam@148: } cannam@148: cannam@148: template cannam@148: inline Locked MutexGuarded::lockShared() const { cannam@148: mutex.lock(_::Mutex::SHARED); cannam@148: return Locked(mutex, value); cannam@148: } cannam@148: cannam@148: template cannam@148: inline const T& MutexGuarded::getAlreadyLockedShared() const { cannam@148: #ifdef KJ_DEBUG cannam@148: mutex.assertLockedByCaller(_::Mutex::SHARED); cannam@148: #endif cannam@148: return value; cannam@148: } cannam@148: template cannam@148: inline T& MutexGuarded::getAlreadyLockedShared() { cannam@148: #ifdef KJ_DEBUG cannam@148: mutex.assertLockedByCaller(_::Mutex::SHARED); cannam@148: #endif cannam@148: return value; cannam@148: } cannam@148: template cannam@148: inline T& MutexGuarded::getAlreadyLockedExclusive() const { cannam@148: #ifdef KJ_DEBUG cannam@148: mutex.assertLockedByCaller(_::Mutex::EXCLUSIVE); cannam@148: #endif cannam@148: return const_cast(value); cannam@148: } cannam@148: cannam@148: template cannam@148: template cannam@148: class Lazy::InitImpl: public _::Once::Initializer { cannam@148: public: cannam@148: inline InitImpl(const Lazy& lazy, Func&& func): lazy(lazy), func(kj::fwd(func)) {} cannam@148: cannam@148: void run() override { cannam@148: lazy.value = func(lazy.space); cannam@148: } cannam@148: cannam@148: private: cannam@148: const Lazy& lazy; cannam@148: Func func; cannam@148: }; cannam@148: cannam@148: template cannam@148: template cannam@148: inline T& Lazy::get(Func&& init) { cannam@148: if (!once.isInitialized()) { cannam@148: InitImpl initImpl(*this, kj::fwd(init)); cannam@148: once.runOnce(initImpl); cannam@148: } cannam@148: return *value; cannam@148: } cannam@148: cannam@148: template cannam@148: template cannam@148: inline const T& Lazy::get(Func&& init) const { cannam@148: if (!once.isInitialized()) { cannam@148: InitImpl initImpl(*this, kj::fwd(init)); cannam@148: once.runOnce(initImpl); cannam@148: } cannam@148: return *value; cannam@148: } cannam@148: cannam@148: } // namespace kj cannam@148: cannam@148: #endif // KJ_MUTEX_H_