Chris@69: /* Copyright (c) 2002-2008 Jean-Marc Valin Chris@69: Copyright (c) 2007-2008 CSIRO Chris@69: Copyright (c) 2007-2009 Xiph.Org Foundation Chris@69: Written by Jean-Marc Valin */ Chris@69: /** Chris@69: @file mathops.h Chris@69: @brief Various math functions Chris@69: */ Chris@69: /* Chris@69: Redistribution and use in source and binary forms, with or without Chris@69: modification, are permitted provided that the following conditions Chris@69: are met: Chris@69: Chris@69: - Redistributions of source code must retain the above copyright Chris@69: notice, this list of conditions and the following disclaimer. Chris@69: Chris@69: - Redistributions in binary form must reproduce the above copyright Chris@69: notice, this list of conditions and the following disclaimer in the Chris@69: documentation and/or other materials provided with the distribution. Chris@69: Chris@69: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS Chris@69: ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT Chris@69: LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR Chris@69: A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER Chris@69: OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, Chris@69: EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, Chris@69: PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR Chris@69: PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF Chris@69: LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING Chris@69: NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS Chris@69: SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Chris@69: */ Chris@69: Chris@69: #ifndef MATHOPS_H Chris@69: #define MATHOPS_H Chris@69: Chris@69: #include "arch.h" Chris@69: #include "entcode.h" Chris@69: #include "os_support.h" Chris@69: Chris@69: #define PI 3.141592653f Chris@69: Chris@69: /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */ Chris@69: #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15) Chris@69: Chris@69: unsigned isqrt32(opus_uint32 _val); Chris@69: Chris@69: /* CELT doesn't need it for fixed-point, by analysis.c does. */ Chris@69: #if !defined(FIXED_POINT) || defined(ANALYSIS_C) Chris@69: #define cA 0.43157974f Chris@69: #define cB 0.67848403f Chris@69: #define cC 0.08595542f Chris@69: #define cE ((float)PI/2) Chris@69: static OPUS_INLINE float fast_atan2f(float y, float x) { Chris@69: float x2, y2; Chris@69: x2 = x*x; Chris@69: y2 = y*y; Chris@69: /* For very small values, we don't care about the answer, so Chris@69: we can just return 0. */ Chris@69: if (x2 + y2 < 1e-18f) Chris@69: { Chris@69: return 0; Chris@69: } Chris@69: if(x2>23)-127; Chris@69: in.i -= integer<<23; Chris@69: frac = in.f - 1.5f; Chris@69: frac = -0.41445418f + frac*(0.95909232f Chris@69: + frac*(-0.33951290f + frac*0.16541097f)); Chris@69: return 1+integer+frac; Chris@69: } Chris@69: Chris@69: /** Base-2 exponential approximation (2^x). */ Chris@69: static OPUS_INLINE float celt_exp2(float x) Chris@69: { Chris@69: int integer; Chris@69: float frac; Chris@69: union { Chris@69: float f; Chris@69: opus_uint32 i; Chris@69: } res; Chris@69: integer = floor(x); Chris@69: if (integer < -50) Chris@69: return 0; Chris@69: frac = x-integer; Chris@69: /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */ Chris@69: res.f = 0.99992522f + frac * (0.69583354f Chris@69: + frac * (0.22606716f + 0.078024523f*frac)); Chris@69: res.i = (res.i + (integer<<23)) & 0x7fffffff; Chris@69: return res.f; Chris@69: } Chris@69: Chris@69: #else Chris@69: #define celt_log2(x) ((float)(1.442695040888963387*log(x))) Chris@69: #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x))) Chris@69: #endif Chris@69: Chris@69: #endif Chris@69: Chris@69: #ifdef FIXED_POINT Chris@69: Chris@69: #include "os_support.h" Chris@69: Chris@69: #ifndef OVERRIDE_CELT_ILOG2 Chris@69: /** Integer log in base2. Undefined for zero and negative numbers */ Chris@69: static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x) Chris@69: { Chris@69: celt_sig_assert(x>0); Chris@69: return EC_ILOG(x)-1; Chris@69: } Chris@69: #endif Chris@69: Chris@69: Chris@69: /** Integer log in base2. Defined for zero, but not for negative numbers */ Chris@69: static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x) Chris@69: { Chris@69: return x <= 0 ? 0 : celt_ilog2(x); Chris@69: } Chris@69: Chris@69: opus_val16 celt_rsqrt_norm(opus_val32 x); Chris@69: Chris@69: opus_val32 celt_sqrt(opus_val32 x); Chris@69: Chris@69: opus_val16 celt_cos_norm(opus_val32 x); Chris@69: Chris@69: /** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */ Chris@69: static OPUS_INLINE opus_val16 celt_log2(opus_val32 x) Chris@69: { Chris@69: int i; Chris@69: opus_val16 n, frac; Chris@69: /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605, Chris@69: 0.15530808010959576, -0.08556153059057618 */ Chris@69: static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401}; Chris@69: if (x==0) Chris@69: return -32767; Chris@69: i = celt_ilog2(x); Chris@69: n = VSHR32(x,i-15)-32768-16384; Chris@69: frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4])))))))); Chris@69: return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT); Chris@69: } Chris@69: Chris@69: /* Chris@69: K0 = 1 Chris@69: K1 = log(2) Chris@69: K2 = 3-4*log(2) Chris@69: K3 = 3*log(2) - 2 Chris@69: */ Chris@69: #define D0 16383 Chris@69: #define D1 22804 Chris@69: #define D2 14819 Chris@69: #define D3 10204 Chris@69: Chris@69: static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x) Chris@69: { Chris@69: opus_val16 frac; Chris@69: frac = SHL16(x, 4); Chris@69: return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac)))))); Chris@69: } Chris@69: /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */ Chris@69: static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x) Chris@69: { Chris@69: int integer; Chris@69: opus_val16 frac; Chris@69: integer = SHR16(x,10); Chris@69: if (integer>14) Chris@69: return 0x7f000000; Chris@69: else if (integer < -15) Chris@69: return 0; Chris@69: frac = celt_exp2_frac(x-SHL16(integer,10)); Chris@69: return VSHR32(EXTEND32(frac), -integer-2); Chris@69: } Chris@69: Chris@69: opus_val32 celt_rcp(opus_val32 x); Chris@69: Chris@69: #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b)) Chris@69: Chris@69: opus_val32 frac_div32(opus_val32 a, opus_val32 b); Chris@69: Chris@69: #define M1 32767 Chris@69: #define M2 -21 Chris@69: #define M3 -11943 Chris@69: #define M4 4936 Chris@69: Chris@69: /* Atan approximation using a 4th order polynomial. Input is in Q15 format Chris@69: and normalized by pi/4. Output is in Q15 format */ Chris@69: static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x) Chris@69: { Chris@69: return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x))))))); Chris@69: } Chris@69: Chris@69: #undef M1 Chris@69: #undef M2 Chris@69: #undef M3 Chris@69: #undef M4 Chris@69: Chris@69: /* atan2() approximation valid for positive input values */ Chris@69: static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x) Chris@69: { Chris@69: if (y < x) Chris@69: { Chris@69: opus_val32 arg; Chris@69: arg = celt_div(SHL32(EXTEND32(y),15),x); Chris@69: if (arg >= 32767) Chris@69: arg = 32767; Chris@69: return SHR16(celt_atan01(EXTRACT16(arg)),1); Chris@69: } else { Chris@69: opus_val32 arg; Chris@69: arg = celt_div(SHL32(EXTEND32(x),15),y); Chris@69: if (arg >= 32767) Chris@69: arg = 32767; Chris@69: return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1); Chris@69: } Chris@69: } Chris@69: Chris@69: #endif /* FIXED_POINT */ Chris@69: #endif /* MATHOPS_H */