Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This Chris@10: is mainly useful because we can use Rader to compute DHTs of prime Chris@10: sizes. It also allows us to express hc2r problems in terms of r2hc Chris@10: (via dht-r2hc), and to do hc2r problems without destroying the input. */ Chris@10: Chris@10: #include "rdft.h" Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_rdft super; Chris@10: plan *cld; Chris@10: INT is, os; Chris@10: INT n; Chris@10: } P; Chris@10: Chris@10: static void apply_r2hc(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT os; Chris@10: INT i, n; Chris@10: Chris@10: { Chris@10: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@10: cld->apply((plan *) cld, I, O); Chris@10: } Chris@10: Chris@10: n = ego->n; Chris@10: os = ego->os; Chris@10: for (i = 1; i < n - i; ++i) { Chris@10: E a, b; Chris@10: a = K(0.5) * O[os * i]; Chris@10: b = K(0.5) * O[os * (n - i)]; Chris@10: O[os * i] = a + b; Chris@10: #if FFT_SIGN == -1 Chris@10: O[os * (n - i)] = b - a; Chris@10: #else Chris@10: O[os * (n - i)] = a - b; Chris@10: #endif Chris@10: } Chris@10: } Chris@10: Chris@10: /* hc2r, destroying input as usual */ Chris@10: static void apply_hc2r(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT is = ego->is; Chris@10: INT i, n = ego->n; Chris@10: Chris@10: for (i = 1; i < n - i; ++i) { Chris@10: E a, b; Chris@10: a = I[is * i]; Chris@10: b = I[is * (n - i)]; Chris@10: #if FFT_SIGN == -1 Chris@10: I[is * i] = a - b; Chris@10: I[is * (n - i)] = a + b; Chris@10: #else Chris@10: I[is * i] = a + b; Chris@10: I[is * (n - i)] = a - b; Chris@10: #endif Chris@10: } Chris@10: Chris@10: { Chris@10: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@10: cld->apply((plan *) cld, I, O); Chris@10: } Chris@10: } Chris@10: Chris@10: /* hc2r, without destroying input */ Chris@10: static void apply_hc2r_save(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT is = ego->is, os = ego->os; Chris@10: INT i, n = ego->n; Chris@10: Chris@10: O[0] = I[0]; Chris@10: for (i = 1; i < n - i; ++i) { Chris@10: E a, b; Chris@10: a = I[is * i]; Chris@10: b = I[is * (n - i)]; Chris@10: #if FFT_SIGN == -1 Chris@10: O[os * i] = a - b; Chris@10: O[os * (n - i)] = a + b; Chris@10: #else Chris@10: O[os * i] = a + b; Chris@10: O[os * (n - i)] = a - b; Chris@10: #endif Chris@10: } Chris@10: if (i == n - i) Chris@10: O[os * i] = I[is * i]; Chris@10: Chris@10: { Chris@10: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@10: cld->apply((plan *) cld, O, O); Chris@10: } Chris@10: } Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_awake)(ego->cld, wakefulness); Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_destroy_internal)(ego->cld); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: p->print(p, "(%s-dht-%D%(%p%))", Chris@10: ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", Chris@10: ego->n, ego->cld); Chris@10: } Chris@10: Chris@10: static int applicable0(const solver *ego_, const problem *p_) Chris@10: { Chris@10: const problem_rdft *p = (const problem_rdft *) p_; Chris@10: UNUSED(ego_); Chris@10: Chris@10: return (1 Chris@10: && p->sz->rnk == 1 Chris@10: && p->vecsz->rnk == 0 Chris@10: && (p->kind[0] == R2HC || p->kind[0] == HC2R) Chris@10: Chris@10: /* hack: size-2 DHT etc. are defined as being equivalent Chris@10: to size-2 R2HC in problem.c, so we need this to prevent Chris@10: infinite loops for size 2 in EXHAUSTIVE mode: */ Chris@10: && p->sz->dims[0].n > 2 Chris@10: ); Chris@10: } Chris@10: Chris@10: static int applicable(const solver *ego, const problem *p_, Chris@10: const planner *plnr) Chris@10: { Chris@10: return (!NO_SLOWP(plnr) && applicable0(ego, p_)); Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: P *pln; Chris@10: const problem_rdft *p; Chris@10: problem *cldp; Chris@10: plan *cld; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(rdft_solve), awake, print, destroy Chris@10: }; Chris@10: Chris@10: if (!applicable(ego_, p_, plnr)) Chris@10: return (plan *)0; Chris@10: Chris@10: p = (const problem_rdft *) p_; Chris@10: Chris@10: if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr)) Chris@10: cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT); Chris@10: else { Chris@10: tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS); Chris@10: cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT); Chris@10: X(tensor_destroy)(sz); Chris@10: } Chris@10: cld = X(mkplan_d)(plnr, cldp); Chris@10: if (!cld) return (plan *)0; Chris@10: Chris@10: pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ? Chris@10: apply_r2hc : (NO_DESTROY_INPUTP(plnr) ? Chris@10: apply_hc2r_save : apply_hc2r)); Chris@10: pln->n = p->sz->dims[0].n; Chris@10: pln->is = p->sz->dims[0].is; Chris@10: pln->os = p->sz->dims[0].os; Chris@10: pln->cld = cld; Chris@10: Chris@10: pln->super.super.ops = cld->ops; Chris@10: pln->super.super.ops.other += 4 * ((pln->n - 1)/2); Chris@10: pln->super.super.ops.add += 2 * ((pln->n - 1)/2); Chris@10: if (p->kind[0] == R2HC) Chris@10: pln->super.super.ops.mul += 2 * ((pln->n - 1)/2); Chris@10: if (pln->super.apply == apply_hc2r_save) Chris@10: pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2); Chris@10: Chris@10: return &(pln->super.super); Chris@10: } Chris@10: Chris@10: /* constructor */ Chris@10: static solver *mksolver(void) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: return &(slv->super); Chris@10: } Chris@10: Chris@10: void X(rdft_dht_register)(planner *p) Chris@10: { Chris@10: REGISTER_SOLVER(p, mksolver()); Chris@10: }