Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: /* Compute the complex DFT by combining R2HC RDFTs on the real Chris@10: and imaginary parts. This could be useful for people just wanting Chris@10: to link to the real codelets and not the complex ones. It could Chris@10: also even be faster than the complex algorithms for split (as opposed Chris@10: to interleaved) real/imag complex data. */ Chris@10: Chris@10: #include "rdft.h" Chris@10: #include "dft.h" Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_dft super; Chris@10: plan *cld; Chris@10: INT ishift, oshift; Chris@10: INT os; Chris@10: INT n; Chris@10: } P; Chris@10: Chris@10: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT n; Chris@10: Chris@10: UNUSED(ii); Chris@10: Chris@10: { /* transform vector of real & imag parts: */ Chris@10: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@10: cld->apply((plan *) cld, ri + ego->ishift, ro + ego->oshift); Chris@10: } Chris@10: Chris@10: n = ego->n; Chris@10: if (n > 1) { Chris@10: INT i, os = ego->os; Chris@10: for (i = 1; i < (n + 1)/2; ++i) { Chris@10: E rop, iop, iom, rom; Chris@10: rop = ro[os * i]; Chris@10: iop = io[os * i]; Chris@10: rom = ro[os * (n - i)]; Chris@10: iom = io[os * (n - i)]; Chris@10: ro[os * i] = rop - iom; Chris@10: io[os * i] = iop + rom; Chris@10: ro[os * (n - i)] = rop + iom; Chris@10: io[os * (n - i)] = iop - rom; Chris@10: } Chris@10: } Chris@10: } Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_awake)(ego->cld, wakefulness); Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_destroy_internal)(ego->cld); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: p->print(p, "(dft-r2hc-%D%(%p%))", ego->n, ego->cld); Chris@10: } Chris@10: Chris@10: Chris@10: static int applicable0(const problem *p_) Chris@10: { Chris@10: const problem_dft *p = (const problem_dft *) p_; Chris@10: return ((p->sz->rnk == 1 && p->vecsz->rnk == 0) Chris@10: || (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk)) Chris@10: ); Chris@10: } Chris@10: Chris@10: static int splitp(R *r, R *i, INT n, INT s) Chris@10: { Chris@10: return ((r > i ? (r - i) : (i - r)) >= n * (s > 0 ? s : 0-s)); Chris@10: } Chris@10: Chris@10: static int applicable(const problem *p_, const planner *plnr) Chris@10: { Chris@10: if (!applicable0(p_)) return 0; Chris@10: Chris@10: { Chris@10: const problem_dft *p = (const problem_dft *) p_; Chris@10: Chris@10: /* rank-0 problems are always OK */ Chris@10: if (p->sz->rnk == 0) return 1; Chris@10: Chris@10: /* this solver is ok for split arrays */ Chris@10: if (p->sz->rnk == 1 && Chris@10: splitp(p->ri, p->ii, p->sz->dims[0].n, p->sz->dims[0].is) && Chris@10: splitp(p->ro, p->io, p->sz->dims[0].n, p->sz->dims[0].os)) Chris@10: return 1; Chris@10: Chris@10: return !(NO_DFT_R2HCP(plnr)); Chris@10: } Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: P *pln; Chris@10: const problem_dft *p; Chris@10: plan *cld; Chris@10: INT ishift = 0, oshift = 0; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(dft_solve), awake, print, destroy Chris@10: }; Chris@10: Chris@10: UNUSED(ego_); Chris@10: if (!applicable(p_, plnr)) Chris@10: return (plan *)0; Chris@10: Chris@10: p = (const problem_dft *) p_; Chris@10: Chris@10: { Chris@10: tensor *ri_vec = X(mktensor_1d)(2, p->ii - p->ri, p->io - p->ro); Chris@10: tensor *cld_vec = X(tensor_append)(ri_vec, p->vecsz); Chris@10: int i; Chris@10: for (i = 0; i < cld_vec->rnk; ++i) { /* make all istrides > 0 */ Chris@10: if (cld_vec->dims[i].is < 0) { Chris@10: INT nm1 = cld_vec->dims[i].n - 1; Chris@10: ishift -= nm1 * (cld_vec->dims[i].is *= -1); Chris@10: oshift -= nm1 * (cld_vec->dims[i].os *= -1); Chris@10: } Chris@10: } Chris@10: cld = X(mkplan_d)(plnr, Chris@10: X(mkproblem_rdft_1)(p->sz, cld_vec, Chris@10: p->ri + ishift, Chris@10: p->ro + oshift, R2HC)); Chris@10: X(tensor_destroy2)(ri_vec, cld_vec); Chris@10: } Chris@10: if (!cld) return (plan *)0; Chris@10: Chris@10: pln = MKPLAN_DFT(P, &padt, apply); Chris@10: Chris@10: if (p->sz->rnk == 0) { Chris@10: pln->n = 1; Chris@10: pln->os = 0; Chris@10: } Chris@10: else { Chris@10: pln->n = p->sz->dims[0].n; Chris@10: pln->os = p->sz->dims[0].os; Chris@10: } Chris@10: pln->ishift = ishift; Chris@10: pln->oshift = oshift; Chris@10: Chris@10: pln->cld = cld; Chris@10: Chris@10: pln->super.super.ops = cld->ops; Chris@10: pln->super.super.ops.other += 8 * ((pln->n - 1)/2); Chris@10: pln->super.super.ops.add += 4 * ((pln->n - 1)/2); Chris@10: pln->super.super.ops.other += 1; /* estimator hack for nop plans */ Chris@10: Chris@10: return &(pln->super.super); Chris@10: } Chris@10: Chris@10: /* constructor */ Chris@10: static solver *mksolver(void) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: return &(slv->super); Chris@10: } Chris@10: Chris@10: void X(dft_r2hc_register)(planner *p) Chris@10: { Chris@10: REGISTER_SOLVER(p, mksolver()); Chris@10: }