Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: #include "ct-hc2c.h" Chris@10: Chris@10: typedef struct { Chris@10: hc2c_solver super; Chris@10: const hc2c_desc *desc; Chris@10: int bufferedp; Chris@10: khc2c k; Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_hc2c super; Chris@10: khc2c k; Chris@10: plan *cld0, *cldm; /* children for 0th and middle butterflies */ Chris@10: INT r, m, v, extra_iter; Chris@10: INT ms, vs; Chris@10: stride rs, brs; Chris@10: twid *td; Chris@10: const S *slv; Chris@10: } P; Chris@10: Chris@10: /************************************************************* Chris@10: Nonbuffered code Chris@10: *************************************************************/ Chris@10: static void apply(const plan *ego_, R *cr, R *ci) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: plan_rdft2 *cld0 = (plan_rdft2 *) ego->cld0; Chris@10: plan_rdft2 *cldm = (plan_rdft2 *) ego->cldm; Chris@10: INT i, m = ego->m, v = ego->v; Chris@10: INT ms = ego->ms, vs = ego->vs; Chris@10: Chris@10: for (i = 0; i < v; ++i, cr += vs, ci += vs) { Chris@10: cld0->apply((plan *) cld0, cr, ci, cr, ci); Chris@10: ego->k(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, Chris@10: ego->td->W, ego->rs, 1, (m+1)/2, ms); Chris@10: cldm->apply((plan *) cldm, cr + (m/2)*ms, ci + (m/2)*ms, Chris@10: cr + (m/2)*ms, ci + (m/2)*ms); Chris@10: } Chris@10: } Chris@10: Chris@10: static void apply_extra_iter(const plan *ego_, R *cr, R *ci) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: plan_rdft2 *cld0 = (plan_rdft2 *) ego->cld0; Chris@10: plan_rdft2 *cldm = (plan_rdft2 *) ego->cldm; Chris@10: INT i, m = ego->m, v = ego->v; Chris@10: INT ms = ego->ms, vs = ego->vs; Chris@10: INT mm = (m-1)/2; Chris@10: Chris@10: for (i = 0; i < v; ++i, cr += vs, ci += vs) { Chris@10: cld0->apply((plan *) cld0, cr, ci, cr, ci); Chris@10: Chris@10: /* for 4-way SIMD when (m+1)/2-1 is odd: iterate over an Chris@10: even vector length MM-1, and then execute the last Chris@10: iteration as a 2-vector with vector stride 0. The Chris@10: twiddle factors of the second half of the last iteration Chris@10: are bogus, but we only store the results of the first Chris@10: half. */ Chris@10: ego->k(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, Chris@10: ego->td->W, ego->rs, 1, mm, ms); Chris@10: ego->k(cr + mm*ms, ci + mm*ms, cr + (m-mm)*ms, ci + (m-mm)*ms, Chris@10: ego->td->W, ego->rs, mm, mm+2, 0); Chris@10: cldm->apply((plan *) cldm, cr + (m/2)*ms, ci + (m/2)*ms, Chris@10: cr + (m/2)*ms, ci + (m/2)*ms); Chris@10: } Chris@10: Chris@10: } Chris@10: Chris@10: /************************************************************* Chris@10: Buffered code Chris@10: *************************************************************/ Chris@10: Chris@10: /* should not be 2^k to avoid associativity conflicts */ Chris@10: static INT compute_batchsize(INT radix) Chris@10: { Chris@10: /* round up to multiple of 4 */ Chris@10: radix += 3; Chris@10: radix &= -4; Chris@10: Chris@10: return (radix + 2); Chris@10: } Chris@10: Chris@10: static void dobatch(const P *ego, R *Rp, R *Ip, R *Rm, R *Im, Chris@10: INT mb, INT me, INT extra_iter, R *bufp) Chris@10: { Chris@10: INT b = WS(ego->brs, 1); Chris@10: INT rs = WS(ego->rs, 1); Chris@10: INT ms = ego->ms; Chris@10: R *bufm = bufp + b - 2; Chris@10: Chris@10: X(cpy2d_pair_ci)(Rp + mb * ms, Ip + mb * ms, bufp, bufp + 1, Chris@10: ego->r / 2, rs, b, Chris@10: me - mb, ms, 2); Chris@10: X(cpy2d_pair_ci)(Rm - mb * ms, Im - mb * ms, bufm, bufm + 1, Chris@10: ego->r / 2, rs, b, Chris@10: me - mb, -ms, -2); Chris@10: ego->k(bufp, bufp + 1, bufm, bufm + 1, ego->td->W, Chris@10: ego->brs, mb, me + extra_iter, 2); Chris@10: X(cpy2d_pair_co)(bufp, bufp + 1, Rp + mb * ms, Ip + mb * ms, Chris@10: ego->r / 2, b, rs, Chris@10: me - mb, 2, ms); Chris@10: X(cpy2d_pair_co)(bufm, bufm + 1, Rm - mb * ms, Im - mb * ms, Chris@10: ego->r / 2, b, rs, Chris@10: me - mb, -2, -ms); Chris@10: } Chris@10: Chris@10: static void apply_buf(const plan *ego_, R *cr, R *ci) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: plan_rdft2 *cld0 = (plan_rdft2 *) ego->cld0; Chris@10: plan_rdft2 *cldm = (plan_rdft2 *) ego->cldm; Chris@10: INT i, j, ms = ego->ms, v = ego->v; Chris@10: INT batchsz = compute_batchsize(ego->r); Chris@10: R *buf; Chris@10: INT mb = 1, me = (ego->m+1) / 2; Chris@10: size_t bufsz = ego->r * batchsz * 2 * sizeof(R); Chris@10: Chris@10: BUF_ALLOC(R *, buf, bufsz); Chris@10: Chris@10: for (i = 0; i < v; ++i, cr += ego->vs, ci += ego->vs) { Chris@10: R *Rp = cr; Chris@10: R *Ip = ci; Chris@10: R *Rm = cr + ego->m * ms; Chris@10: R *Im = ci + ego->m * ms; Chris@10: Chris@10: cld0->apply((plan *) cld0, Rp, Ip, Rp, Ip); Chris@10: Chris@10: for (j = mb; j + batchsz < me; j += batchsz) Chris@10: dobatch(ego, Rp, Ip, Rm, Im, j, j + batchsz, 0, buf); Chris@10: Chris@10: dobatch(ego, Rp, Ip, Rm, Im, j, me, ego->extra_iter, buf); Chris@10: Chris@10: cldm->apply((plan *) cldm, Chris@10: Rp + me * ms, Ip + me * ms, Chris@10: Rp + me * ms, Ip + me * ms); Chris@10: Chris@10: } Chris@10: Chris@10: BUF_FREE(buf, bufsz); Chris@10: } Chris@10: Chris@10: /************************************************************* Chris@10: common code Chris@10: *************************************************************/ Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: Chris@10: X(plan_awake)(ego->cld0, wakefulness); Chris@10: X(plan_awake)(ego->cldm, wakefulness); Chris@10: X(twiddle_awake)(wakefulness, &ego->td, ego->slv->desc->tw, Chris@10: ego->r * ego->m, ego->r, Chris@10: (ego->m - 1) / 2 + ego->extra_iter); Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_destroy_internal)(ego->cld0); Chris@10: X(plan_destroy_internal)(ego->cldm); Chris@10: X(stride_destroy)(ego->rs); Chris@10: X(stride_destroy)(ego->brs); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: const S *slv = ego->slv; Chris@10: const hc2c_desc *e = slv->desc; Chris@10: Chris@10: if (slv->bufferedp) Chris@10: p->print(p, "(hc2c-directbuf/%D-%D/%D/%D%v \"%s\"%(%p%)%(%p%))", Chris@10: compute_batchsize(ego->r), Chris@10: ego->r, X(twiddle_length)(ego->r, e->tw), Chris@10: ego->extra_iter, ego->v, e->nam, Chris@10: ego->cld0, ego->cldm); Chris@10: else Chris@10: p->print(p, "(hc2c-direct-%D/%D/%D%v \"%s\"%(%p%)%(%p%))", Chris@10: ego->r, X(twiddle_length)(ego->r, e->tw), Chris@10: ego->extra_iter, ego->v, e->nam, Chris@10: ego->cld0, ego->cldm); Chris@10: } Chris@10: Chris@10: static int applicable0(const S *ego, rdft_kind kind, Chris@10: INT r, INT rs, Chris@10: INT m, INT ms, Chris@10: INT v, INT vs, Chris@10: const R *cr, const R *ci, Chris@10: const planner *plnr, Chris@10: INT *extra_iter) Chris@10: { Chris@10: const hc2c_desc *e = ego->desc; Chris@10: UNUSED(v); Chris@10: Chris@10: return ( Chris@10: 1 Chris@10: && r == e->radix Chris@10: && kind == e->genus->kind Chris@10: Chris@10: /* first v-loop iteration */ Chris@10: && ((*extra_iter = 0, Chris@10: e->genus->okp(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, Chris@10: rs, 1, (m+1)/2, ms, plnr)) Chris@10: || Chris@10: (*extra_iter = 1, Chris@10: ((e->genus->okp(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, Chris@10: rs, 1, (m-1)/2, ms, plnr)) Chris@10: && Chris@10: (e->genus->okp(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, Chris@10: rs, (m-1)/2, (m-1)/2 + 2, 0, plnr))))) Chris@10: Chris@10: /* subsequent v-loop iterations */ Chris@10: && (cr += vs, ci += vs, 1) Chris@10: Chris@10: && e->genus->okp(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, Chris@10: rs, 1, (m+1)/2 - *extra_iter, ms, plnr) Chris@10: ); Chris@10: } Chris@10: Chris@10: static int applicable0_buf(const S *ego, rdft_kind kind, Chris@10: INT r, INT rs, Chris@10: INT m, INT ms, Chris@10: INT v, INT vs, Chris@10: const R *cr, const R *ci, Chris@10: const planner *plnr, INT *extra_iter) Chris@10: { Chris@10: const hc2c_desc *e = ego->desc; Chris@10: INT batchsz, brs; Chris@10: UNUSED(v); UNUSED(rs); UNUSED(ms); UNUSED(vs); Chris@10: Chris@10: return ( Chris@10: 1 Chris@10: && r == e->radix Chris@10: && kind == e->genus->kind Chris@10: Chris@10: /* ignore cr, ci, use buffer */ Chris@10: && (cr = (const R *)0, ci = cr + 1, Chris@10: batchsz = compute_batchsize(r), Chris@10: brs = 4 * batchsz, 1) Chris@10: Chris@10: && e->genus->okp(cr, ci, cr + brs - 2, ci + brs - 2, Chris@10: brs, 1, 1+batchsz, 2, plnr) Chris@10: Chris@10: && ((*extra_iter = 0, Chris@10: e->genus->okp(cr, ci, cr + brs - 2, ci + brs - 2, Chris@10: brs, 1, 1 + (((m-1)/2) % batchsz), 2, plnr)) Chris@10: || Chris@10: (*extra_iter = 1, Chris@10: e->genus->okp(cr, ci, cr + brs - 2, ci + brs - 2, Chris@10: brs, 1, 1 + 1 + (((m-1)/2) % batchsz), 2, plnr))) Chris@10: Chris@10: ); Chris@10: } Chris@10: Chris@10: static int applicable(const S *ego, rdft_kind kind, Chris@10: INT r, INT rs, Chris@10: INT m, INT ms, Chris@10: INT v, INT vs, Chris@10: R *cr, R *ci, Chris@10: const planner *plnr, INT *extra_iter) Chris@10: { Chris@10: if (ego->bufferedp) { Chris@10: if (!applicable0_buf(ego, kind, r, rs, m, ms, v, vs, cr, ci, plnr, Chris@10: extra_iter)) Chris@10: return 0; Chris@10: } else { Chris@10: if (!applicable0(ego, kind, r, rs, m, ms, v, vs, cr, ci, plnr, Chris@10: extra_iter)) Chris@10: return 0; Chris@10: } Chris@10: Chris@10: if (NO_UGLYP(plnr) && X(ct_uglyp)((ego->bufferedp? (INT)512 : (INT)16), Chris@10: v, m * r, r)) Chris@10: return 0; Chris@10: Chris@10: return 1; Chris@10: } Chris@10: Chris@10: static plan *mkcldw(const hc2c_solver *ego_, rdft_kind kind, Chris@10: INT r, INT rs, Chris@10: INT m, INT ms, Chris@10: INT v, INT vs, Chris@10: R *cr, R *ci, Chris@10: planner *plnr) Chris@10: { Chris@10: const S *ego = (const S *) ego_; Chris@10: P *pln; Chris@10: const hc2c_desc *e = ego->desc; Chris@10: plan *cld0 = 0, *cldm = 0; Chris@10: INT imid = (m / 2) * ms; Chris@10: INT extra_iter; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: 0, awake, print, destroy Chris@10: }; Chris@10: Chris@10: if (!applicable(ego, kind, r, rs, m, ms, v, vs, cr, ci, plnr, Chris@10: &extra_iter)) Chris@10: return (plan *)0; Chris@10: Chris@10: cld0 = X(mkplan_d)( Chris@10: plnr, Chris@10: X(mkproblem_rdft2_d)(X(mktensor_1d)(r, rs, rs), Chris@10: X(mktensor_0d)(), Chris@10: TAINT(cr, vs), TAINT(ci, vs), Chris@10: TAINT(cr, vs), TAINT(ci, vs), Chris@10: kind)); Chris@10: if (!cld0) goto nada; Chris@10: Chris@10: cldm = X(mkplan_d)( Chris@10: plnr, Chris@10: X(mkproblem_rdft2_d)(((m % 2) ? Chris@10: X(mktensor_0d)() : X(mktensor_1d)(r, rs, rs) ), Chris@10: X(mktensor_0d)(), Chris@10: TAINT(cr + imid, vs), TAINT(ci + imid, vs), Chris@10: TAINT(cr + imid, vs), TAINT(ci + imid, vs), Chris@10: kind == R2HC ? R2HCII : HC2RIII)); Chris@10: if (!cldm) goto nada; Chris@10: Chris@10: if (ego->bufferedp) Chris@10: pln = MKPLAN_HC2C(P, &padt, apply_buf); Chris@10: else Chris@10: pln = MKPLAN_HC2C(P, &padt, extra_iter ? apply_extra_iter : apply); Chris@10: Chris@10: pln->k = ego->k; Chris@10: pln->td = 0; Chris@10: pln->r = r; pln->rs = X(mkstride)(r, rs); Chris@10: pln->m = m; pln->ms = ms; Chris@10: pln->v = v; pln->vs = vs; Chris@10: pln->slv = ego; Chris@10: pln->brs = X(mkstride)(r, 4 * compute_batchsize(r)); Chris@10: pln->cld0 = cld0; Chris@10: pln->cldm = cldm; Chris@10: pln->extra_iter = extra_iter; Chris@10: Chris@10: X(ops_zero)(&pln->super.super.ops); Chris@10: X(ops_madd2)(v * (((m - 1) / 2) / e->genus->vl), Chris@10: &e->ops, &pln->super.super.ops); Chris@10: X(ops_madd2)(v, &cld0->ops, &pln->super.super.ops); Chris@10: X(ops_madd2)(v, &cldm->ops, &pln->super.super.ops); Chris@10: Chris@10: if (ego->bufferedp) Chris@10: pln->super.super.ops.other += 4 * r * m * v; Chris@10: Chris@10: return &(pln->super.super); Chris@10: Chris@10: nada: Chris@10: X(plan_destroy_internal)(cld0); Chris@10: X(plan_destroy_internal)(cldm); Chris@10: return 0; Chris@10: } Chris@10: Chris@10: static void regone(planner *plnr, khc2c codelet, Chris@10: const hc2c_desc *desc, Chris@10: hc2c_kind hc2ckind, Chris@10: int bufferedp) Chris@10: { Chris@10: S *slv = (S *)X(mksolver_hc2c)(sizeof(S), desc->radix, hc2ckind, mkcldw); Chris@10: slv->k = codelet; Chris@10: slv->desc = desc; Chris@10: slv->bufferedp = bufferedp; Chris@10: REGISTER_SOLVER(plnr, &(slv->super.super)); Chris@10: } Chris@10: Chris@10: void X(regsolver_hc2c_direct)(planner *plnr, khc2c codelet, Chris@10: const hc2c_desc *desc, Chris@10: hc2c_kind hc2ckind) Chris@10: { Chris@10: regone(plnr, codelet, desc, hc2ckind, /* bufferedp */0); Chris@10: regone(plnr, codelet, desc, hc2ckind, /* bufferedp */1); Chris@10: }