Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: /* Recursive "radix-r" distributed transpose, which breaks a transpose Chris@10: over p processes into p/r transposes over r processes plus r Chris@10: transposes over p/r processes. If performed recursively, this Chris@10: produces a total of O(p log p) messages vs. O(p^2) messages for a Chris@10: direct approach. Chris@10: Chris@10: However, this is not necessarily an improvement. The total size of Chris@10: all the messages is actually increased from O(N) to O(N log p) Chris@10: where N is the total data size. Also, the amount of local data Chris@10: rearrangement is increased. So, it's not clear, a priori, what the Chris@10: best algorithm will be, and we'll leave it to the planner. (In Chris@10: theory and practice, it looks like this becomes advantageous for Chris@10: large p, in the limit where the message sizes are small and Chris@10: latency-dominated.) Chris@10: */ Chris@10: Chris@10: #include "mpi-transpose.h" Chris@10: #include Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: int (*radix)(int np); Chris@10: const char *nam; Chris@10: int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_mpi_transpose super; Chris@10: Chris@10: plan *cld1, *cldtr, *cldtm; Chris@10: int preserve_input; Chris@10: Chris@10: int r; /* "radix" */ Chris@10: const char *nam; Chris@10: } P; Chris@10: Chris@10: static void apply(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: plan_rdft *cld1, *cldtr, *cldtm; Chris@10: Chris@10: cld1 = (plan_rdft *) ego->cld1; Chris@10: if (cld1) cld1->apply((plan *) cld1, I, O); Chris@10: Chris@10: if (ego->preserve_input) I = O; Chris@10: Chris@10: cldtr = (plan_rdft *) ego->cldtr; Chris@10: if (cldtr) cldtr->apply((plan *) cldtr, O, I); Chris@10: Chris@10: cldtm = (plan_rdft *) ego->cldtm; Chris@10: if (cldtm) cldtm->apply((plan *) cldtm, I, O); Chris@10: } Chris@10: Chris@10: static int radix_sqrt(int np) Chris@10: { Chris@10: int r; Chris@10: for (r = (int) (X(isqrt)(np)); np % r != 0; ++r) Chris@10: ; Chris@10: return r; Chris@10: } Chris@10: Chris@10: static int radix_first(int np) Chris@10: { Chris@10: int r = (int) (X(first_divisor)(np)); Chris@10: return (r >= (int) (X(isqrt)(np)) ? 0 : r); Chris@10: } Chris@10: Chris@10: /* the local allocated space on process pe required for the given transpose Chris@10: dimensions and block sizes */ Chris@10: static INT transpose_space(INT nx, INT ny, INT block, INT tblock, int pe) Chris@10: { Chris@10: return X(imax)(XM(block)(nx, block, pe) * ny, Chris@10: nx * XM(block)(ny, tblock, pe)); Chris@10: } Chris@10: Chris@10: /* check whether the recursive transposes fit within the space Chris@10: that must have been allocated on each process for this transpose; Chris@10: this must be modified if the subdivision in mkplan is changed! */ Chris@10: static int enough_space(INT nx, INT ny, INT block, INT tblock, Chris@10: int r, int n_pes) Chris@10: { Chris@10: int pe; Chris@10: int m = n_pes / r; Chris@10: for (pe = 0; pe < n_pes; ++pe) { Chris@10: INT space = transpose_space(nx, ny, block, tblock, pe); Chris@10: INT b1 = XM(block)(nx, r * block, pe / r); Chris@10: INT b2 = XM(block)(ny, m * tblock, pe % r); Chris@10: if (transpose_space(b1, ny, block, m*tblock, pe % r) > space Chris@10: || transpose_space(nx, b2, r*block, tblock, pe / r) > space) Chris@10: return 0; Chris@10: } Chris@10: return 1; Chris@10: } Chris@10: Chris@10: /* In theory, transpose-recurse becomes advantageous for message sizes Chris@10: below some minimum, assuming that the time is dominated by Chris@10: communications. In practice, we want to constrain the minimum Chris@10: message size for transpose-recurse to keep the planning time down. Chris@10: I've set this conservatively according to some simple experiments Chris@10: on a Cray XT3 where the crossover message size was 128, although on Chris@10: a larger-latency machine the crossover will be larger. */ Chris@10: #define SMALL_MESSAGE 2048 Chris@10: Chris@10: static int applicable(const S *ego, const problem *p_, Chris@10: const planner *plnr, int *r) Chris@10: { Chris@10: const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_; Chris@10: int n_pes; Chris@10: MPI_Comm_size(p->comm, &n_pes); Chris@10: return (1 Chris@10: && p->tblock * n_pes == p->ny Chris@10: && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) Chris@10: && p->I != p->O)) Chris@10: && (*r = ego->radix(n_pes)) && *r < n_pes && *r > 1 Chris@10: && enough_space(p->nx, p->ny, p->block, p->tblock, *r, n_pes) Chris@10: && (!CONSERVE_MEMORYP(plnr) || *r > 8 Chris@10: || !X(toobig)((p->nx * (p->ny / n_pes) * p->vn) / *r)) Chris@10: && (!NO_SLOWP(plnr) || Chris@10: (p->nx * (p->ny / n_pes) * p->vn) / n_pes <= SMALL_MESSAGE) Chris@10: && ONLY_TRANSPOSEDP(p->flags) Chris@10: ); Chris@10: } Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_awake)(ego->cld1, wakefulness); Chris@10: X(plan_awake)(ego->cldtr, wakefulness); Chris@10: X(plan_awake)(ego->cldtm, wakefulness); Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_destroy_internal)(ego->cldtm); Chris@10: X(plan_destroy_internal)(ego->cldtr); Chris@10: X(plan_destroy_internal)(ego->cld1); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: p->print(p, "(mpi-transpose-recurse/%s/%d%s%(%p%)%(%p%)%(%p%))", Chris@10: ego->nam, ego->r, ego->preserve_input==2 ?"/p":"", Chris@10: ego->cld1, ego->cldtr, ego->cldtm); Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: const S *ego = (const S *) ego_; Chris@10: const problem_mpi_transpose *p; Chris@10: P *pln; Chris@10: plan *cld1 = 0, *cldtr = 0, *cldtm = 0; Chris@10: R *I, *O; Chris@10: int me, np, r, m; Chris@10: INT b; Chris@10: MPI_Comm comm2; Chris@10: static const plan_adt padt = { Chris@10: XM(transpose_solve), awake, print, destroy Chris@10: }; Chris@10: Chris@10: UNUSED(ego); Chris@10: Chris@10: if (!applicable(ego, p_, plnr, &r)) Chris@10: return (plan *) 0; Chris@10: Chris@10: p = (const problem_mpi_transpose *) p_; Chris@10: Chris@10: MPI_Comm_size(p->comm, &np); Chris@10: MPI_Comm_rank(p->comm, &me); Chris@10: m = np / r; Chris@10: A(r * m == np); Chris@10: Chris@10: I = p->I; O = p->O; Chris@10: Chris@10: b = XM(block)(p->nx, p->block, me); Chris@10: A(p->tblock * np == p->ny); /* this is currently required for cld1 */ Chris@10: if (p->flags & TRANSPOSED_IN) { Chris@10: /* m x r x (bt x b x vn) -> r x m x (bt x b x vn) */ Chris@10: INT vn = p->vn * b * p->tblock; Chris@10: cld1 = X(mkplan_f_d)(plnr, Chris@10: X(mkproblem_rdft_0_d)(X(mktensor_3d) Chris@10: (m, r*vn, vn, Chris@10: r, vn, m*vn, Chris@10: vn, 1, 1), Chris@10: I, O), Chris@10: 0, 0, NO_SLOW); Chris@10: } Chris@10: else if (I != O) { /* combine cld1 with TRANSPOSED_IN permutation */ Chris@10: /* b x m x r x bt x vn -> r x m x bt x b x vn */ Chris@10: INT vn = p->vn; Chris@10: INT bt = p->tblock; Chris@10: cld1 = X(mkplan_f_d)(plnr, Chris@10: X(mkproblem_rdft_0_d)(X(mktensor_5d) Chris@10: (b, m*r*bt*vn, vn, Chris@10: m, r*bt*vn, bt*b*vn, Chris@10: r, bt*vn, m*bt*b*vn, Chris@10: bt, vn, b*vn, Chris@10: vn, 1, 1), Chris@10: I, O), Chris@10: 0, 0, NO_SLOW); Chris@10: } Chris@10: else { /* TRANSPOSED_IN permutation must be separate for in-place */ Chris@10: /* b x (m x r) x bt x vn -> b x (r x m) x bt x vn */ Chris@10: INT vn = p->vn * p->tblock; Chris@10: cld1 = X(mkplan_f_d)(plnr, Chris@10: X(mkproblem_rdft_0_d)(X(mktensor_4d) Chris@10: (m, r*vn, vn, Chris@10: r, vn, m*vn, Chris@10: vn, 1, 1, Chris@10: b, np*vn, np*vn), Chris@10: I, O), Chris@10: 0, 0, NO_SLOW); Chris@10: } Chris@10: if (XM(any_true)(!cld1, p->comm)) goto nada; Chris@10: Chris@10: if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O; Chris@10: Chris@10: b = XM(block)(p->nx, r * p->block, me / r); Chris@10: MPI_Comm_split(p->comm, me / r, me, &comm2); Chris@10: if (b) Chris@10: cldtr = X(mkplan_d)(plnr, XM(mkproblem_transpose) Chris@10: (b, p->ny, p->vn, Chris@10: O, I, p->block, m * p->tblock, comm2, Chris@10: p->I != p->O Chris@10: ? TRANSPOSED_IN : (p->flags & TRANSPOSED_IN))); Chris@10: MPI_Comm_free(&comm2); Chris@10: if (XM(any_true)(b && !cldtr, p->comm)) goto nada; Chris@10: Chris@10: b = XM(block)(p->ny, m * p->tblock, me % r); Chris@10: MPI_Comm_split(p->comm, me % r, me, &comm2); Chris@10: if (b) Chris@10: cldtm = X(mkplan_d)(plnr, XM(mkproblem_transpose) Chris@10: (p->nx, b, p->vn, Chris@10: I, O, r * p->block, p->tblock, comm2, Chris@10: TRANSPOSED_IN | (p->flags & TRANSPOSED_OUT))); Chris@10: MPI_Comm_free(&comm2); Chris@10: if (XM(any_true)(b && !cldtm, p->comm)) goto nada; Chris@10: Chris@10: pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply); Chris@10: Chris@10: pln->cld1 = cld1; Chris@10: pln->cldtr = cldtr; Chris@10: pln->cldtm = cldtm; Chris@10: pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); Chris@10: pln->r = r; Chris@10: pln->nam = ego->nam; Chris@10: Chris@10: pln->super.super.ops = cld1->ops; Chris@10: if (cldtr) X(ops_add2)(&cldtr->ops, &pln->super.super.ops); Chris@10: if (cldtm) X(ops_add2)(&cldtm->ops, &pln->super.super.ops); Chris@10: Chris@10: return &(pln->super.super); Chris@10: Chris@10: nada: Chris@10: X(plan_destroy_internal)(cldtm); Chris@10: X(plan_destroy_internal)(cldtr); Chris@10: X(plan_destroy_internal)(cld1); Chris@10: return (plan *) 0; Chris@10: } Chris@10: Chris@10: static solver *mksolver(int preserve_input, Chris@10: int (*radix)(int np), const char *nam) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: slv->preserve_input = preserve_input; Chris@10: slv->radix = radix; Chris@10: slv->nam = nam; Chris@10: return &(slv->super); Chris@10: } Chris@10: Chris@10: void XM(transpose_recurse_register)(planner *p) Chris@10: { Chris@10: int preserve_input; Chris@10: for (preserve_input = 0; preserve_input <= 1; ++preserve_input) { Chris@10: REGISTER_SOLVER(p, mksolver(preserve_input, radix_sqrt, "sqrt")); Chris@10: REGISTER_SOLVER(p, mksolver(preserve_input, radix_first, "first")); Chris@10: } Chris@10: }