Chris@10: Chris@10: Chris@10: MPI Plan Creation - FFTW 3.3.3 Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10:
Chris@10: Chris@10:

Chris@10: Next: , Chris@10: Previous: MPI Data Distribution Functions, Chris@10: Up: FFTW MPI Reference Chris@10:


Chris@10:
Chris@10: Chris@10:

6.12.5 MPI Plan Creation

Chris@10: Chris@10:
Complex-data MPI DFTs
Chris@10: Chris@10:

Plans for complex-data DFTs (see 2d MPI example) are created by: Chris@10: Chris@10:

Chris@10:

     fftw_plan fftw_mpi_plan_dft_1d(ptrdiff_t n0, fftw_complex *in, fftw_complex *out,
Chris@10:                                     MPI_Comm comm, int sign, unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_dft_2d(ptrdiff_t n0, ptrdiff_t n1,
Chris@10:                                     fftw_complex *in, fftw_complex *out,
Chris@10:                                     MPI_Comm comm, int sign, unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_dft_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
Chris@10:                                     fftw_complex *in, fftw_complex *out,
Chris@10:                                     MPI_Comm comm, int sign, unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_dft(int rnk, const ptrdiff_t *n,
Chris@10:                                  fftw_complex *in, fftw_complex *out,
Chris@10:                                  MPI_Comm comm, int sign, unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_many_dft(int rnk, const ptrdiff_t *n,
Chris@10:                                       ptrdiff_t howmany, ptrdiff_t block, ptrdiff_t tblock,
Chris@10:                                       fftw_complex *in, fftw_complex *out,
Chris@10:                                       MPI_Comm comm, int sign, unsigned flags);
Chris@10: 
Chris@10:

These are similar to their serial counterparts (see Complex DFTs) Chris@10: in specifying the dimensions, sign, and flags of the transform. The Chris@10: comm argument gives an MPI communicator that specifies the set Chris@10: of processes to participate in the transform; plan creation is a Chris@10: collective function that must be called for all processes in the Chris@10: communicator. The in and out pointers refer only to a Chris@10: portion of the overall transform data (see MPI Data Distribution) Chris@10: as specified by the ‘local_size’ functions in the previous Chris@10: section. Unless flags contains FFTW_ESTIMATE, these Chris@10: arrays are overwritten during plan creation as for the serial Chris@10: interface. For multi-dimensional transforms, any dimensions > Chris@10: 1 are supported; for one-dimensional transforms, only composite Chris@10: (non-prime) n0 are currently supported (unlike the serial Chris@10: FFTW). Requesting an unsupported transform size will yield a Chris@10: NULL plan. (As in the serial interface, highly composite sizes Chris@10: generally yield the best performance.) Chris@10: Chris@10:

The advanced-interface fftw_mpi_plan_many_dft additionally Chris@10: allows you to specify the block sizes for the first dimension Chris@10: (block) of the n0 × n1 × n2 × … × nd-1 input data and the first dimension Chris@10: (tblock) of the n1 × n0 × n2 ×…× nd-1 transposed data (at intermediate Chris@10: steps of the transform, and for the output if Chris@10: FFTW_TRANSPOSED_OUT is specified in flags). These must Chris@10: be the same block sizes as were passed to the corresponding Chris@10: ‘local_size’ function; you can pass FFTW_MPI_DEFAULT_BLOCK Chris@10: to use FFTW's default block size as in the basic interface. Also, the Chris@10: howmany parameter specifies that the transform is of contiguous Chris@10: howmany-tuples rather than individual complex numbers; this Chris@10: corresponds to the same parameter in the serial advanced interface Chris@10: (see Advanced Complex DFTs) with stride = howmany and Chris@10: dist = 1. Chris@10: Chris@10:

MPI flags
Chris@10: Chris@10:

The flags can be any of those for the serial FFTW Chris@10: (see Planner Flags), and in addition may include one or more of Chris@10: the following MPI-specific flags, which improve performance at the Chris@10: cost of changing the output or input data formats. Chris@10: Chris@10:

Chris@10: Chris@10:
Real-data MPI DFTs
Chris@10: Chris@10:

Plans for real-input/output (r2c/c2r) DFTs (see Multi-dimensional MPI DFTs of Real Data) are created by: Chris@10: Chris@10:

Chris@10:

     fftw_plan fftw_mpi_plan_dft_r2c_2d(ptrdiff_t n0, ptrdiff_t n1,
Chris@10:                                         double *in, fftw_complex *out,
Chris@10:                                         MPI_Comm comm, unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_dft_r2c_2d(ptrdiff_t n0, ptrdiff_t n1,
Chris@10:                                         double *in, fftw_complex *out,
Chris@10:                                         MPI_Comm comm, unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_dft_r2c_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
Chris@10:                                         double *in, fftw_complex *out,
Chris@10:                                         MPI_Comm comm, unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_dft_r2c(int rnk, const ptrdiff_t *n,
Chris@10:                                      double *in, fftw_complex *out,
Chris@10:                                      MPI_Comm comm, unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_dft_c2r_2d(ptrdiff_t n0, ptrdiff_t n1,
Chris@10:                                         fftw_complex *in, double *out,
Chris@10:                                         MPI_Comm comm, unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_dft_c2r_2d(ptrdiff_t n0, ptrdiff_t n1,
Chris@10:                                         fftw_complex *in, double *out,
Chris@10:                                         MPI_Comm comm, unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_dft_c2r_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
Chris@10:                                         fftw_complex *in, double *out,
Chris@10:                                         MPI_Comm comm, unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_dft_c2r(int rnk, const ptrdiff_t *n,
Chris@10:                                      fftw_complex *in, double *out,
Chris@10:                                      MPI_Comm comm, unsigned flags);
Chris@10: 
Chris@10:

Similar to the serial interface (see Real-data DFTs), these Chris@10: transform logically n0 × n1 × n2 × … × nd-1 real data to/from n0 × n1 × n2 × … × (nd-1/2 + 1) complex Chris@10: data, representing the non-redundant half of the conjugate-symmetry Chris@10: output of a real-input DFT (see Multi-dimensional Transforms). Chris@10: However, the real array must be stored within a padded n0 × n1 × n2 × … × [2 (nd-1/2 + 1)] Chris@10: Chris@10:

array (much like the in-place serial r2c transforms, but here for Chris@10: out-of-place transforms as well). Currently, only multi-dimensional Chris@10: (rnk > 1) r2c/c2r transforms are supported (requesting a plan Chris@10: for rnk = 1 will yield NULL). As explained above Chris@10: (see Multi-dimensional MPI DFTs of Real Data), the data Chris@10: distribution of both the real and complex arrays is given by the Chris@10: ‘local_size’ function called for the dimensions of the Chris@10: complex array. Similar to the other planning functions, the Chris@10: input and output arrays are overwritten when the plan is created Chris@10: except in FFTW_ESTIMATE mode. Chris@10: Chris@10:

As for the complex DFTs above, there is an advance interface that Chris@10: allows you to manually specify block sizes and to transform contiguous Chris@10: howmany-tuples of real/complex numbers: Chris@10: Chris@10:

Chris@10:

     fftw_plan fftw_mpi_plan_many_dft_r2c
Chris@10:                    (int rnk, const ptrdiff_t *n, ptrdiff_t howmany,
Chris@10:                     ptrdiff_t iblock, ptrdiff_t oblock,
Chris@10:                     double *in, fftw_complex *out,
Chris@10:                     MPI_Comm comm, unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_many_dft_c2r
Chris@10:                    (int rnk, const ptrdiff_t *n, ptrdiff_t howmany,
Chris@10:                     ptrdiff_t iblock, ptrdiff_t oblock,
Chris@10:                     fftw_complex *in, double *out,
Chris@10:                     MPI_Comm comm, unsigned flags);
Chris@10: 
Chris@10:
MPI r2r transforms
Chris@10: Chris@10:

There are corresponding plan-creation routines for r2r Chris@10: transforms (see More DFTs of Real Data), currently supporting Chris@10: multidimensional (rnk > 1) transforms only (rnk = 1 will Chris@10: yield a NULL plan): Chris@10: Chris@10:

     fftw_plan fftw_mpi_plan_r2r_2d(ptrdiff_t n0, ptrdiff_t n1,
Chris@10:                                     double *in, double *out,
Chris@10:                                     MPI_Comm comm,
Chris@10:                                     fftw_r2r_kind kind0, fftw_r2r_kind kind1,
Chris@10:                                     unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_r2r_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
Chris@10:                                     double *in, double *out,
Chris@10:                                     MPI_Comm comm,
Chris@10:                                     fftw_r2r_kind kind0, fftw_r2r_kind kind1, fftw_r2r_kind kind2,
Chris@10:                                     unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_r2r(int rnk, const ptrdiff_t *n,
Chris@10:                                  double *in, double *out,
Chris@10:                                  MPI_Comm comm, const fftw_r2r_kind *kind,
Chris@10:                                  unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_many_r2r(int rnk, const ptrdiff_t *n,
Chris@10:                                       ptrdiff_t iblock, ptrdiff_t oblock,
Chris@10:                                       double *in, double *out,
Chris@10:                                       MPI_Comm comm, const fftw_r2r_kind *kind,
Chris@10:                                       unsigned flags);
Chris@10: 
Chris@10:

The parameters are much the same as for the complex DFTs above, except Chris@10: that the arrays are of real numbers (and hence the outputs of the Chris@10: ‘local_size’ data-distribution functions should be interpreted as Chris@10: counts of real rather than complex numbers). Also, the kind Chris@10: parameters specify the r2r kinds along each dimension as for the Chris@10: serial interface (see Real-to-Real Transform Kinds). See Other Multi-dimensional Real-data MPI Transforms. Chris@10: Chris@10:

MPI transposition
Chris@10: Chris@10:

Chris@10: FFTW also provides routines to plan a transpose of a distributed Chris@10: n0 by n1 array of real numbers, or an array of Chris@10: howmany-tuples of real numbers with specified block sizes Chris@10: (see FFTW MPI Transposes): Chris@10: Chris@10:

Chris@10:

     fftw_plan fftw_mpi_plan_transpose(ptrdiff_t n0, ptrdiff_t n1,
Chris@10:                                        double *in, double *out,
Chris@10:                                        MPI_Comm comm, unsigned flags);
Chris@10:      fftw_plan fftw_mpi_plan_many_transpose
Chris@10:                      (ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t howmany,
Chris@10:                       ptrdiff_t block0, ptrdiff_t block1,
Chris@10:                       double *in, double *out, MPI_Comm comm, unsigned flags);
Chris@10: 
Chris@10:

These plans are used with the fftw_mpi_execute_r2r new-array Chris@10: execute function (see Using MPI Plans), since they count as (rank Chris@10: zero) r2r plans from FFTW's perspective. Chris@10: Chris@10: Chris@10: