Chris@10: Chris@10: Chris@10: Complex Multi-Dimensional DFTs - FFTW 3.3.3 Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10: Chris@10:
Chris@10: Chris@10: Chris@10:

Chris@10: Next: , Chris@10: Previous: Complex One-Dimensional DFTs, Chris@10: Up: Tutorial Chris@10:


Chris@10:
Chris@10: Chris@10:

2.2 Complex Multi-Dimensional DFTs

Chris@10: Chris@10:

Multi-dimensional transforms work much the same way as one-dimensional Chris@10: transforms: you allocate arrays of fftw_complex (preferably Chris@10: using fftw_malloc), create an fftw_plan, execute it as Chris@10: many times as you want with fftw_execute(plan), and clean up Chris@10: with fftw_destroy_plan(plan) (and fftw_free). Chris@10: Chris@10:

FFTW provides two routines for creating plans for 2d and 3d transforms, Chris@10: and one routine for creating plans of arbitrary dimensionality. Chris@10: The 2d and 3d routines have the following signature: Chris@10:

     fftw_plan fftw_plan_dft_2d(int n0, int n1,
Chris@10:                                 fftw_complex *in, fftw_complex *out,
Chris@10:                                 int sign, unsigned flags);
Chris@10:      fftw_plan fftw_plan_dft_3d(int n0, int n1, int n2,
Chris@10:                                 fftw_complex *in, fftw_complex *out,
Chris@10:                                 int sign, unsigned flags);
Chris@10: 
Chris@10:

Chris@10: These routines create plans for n0 by n1 two-dimensional Chris@10: (2d) transforms and n0 by n1 by n2 3d transforms, Chris@10: respectively. All of these transforms operate on contiguous arrays in Chris@10: the C-standard row-major order, so that the last dimension has the Chris@10: fastest-varying index in the array. This layout is described further in Chris@10: Multi-dimensional Array Format. Chris@10: Chris@10:

FFTW can also compute transforms of higher dimensionality. In order to Chris@10: avoid confusion between the various meanings of the the word Chris@10: “dimension”, we use the term rank Chris@10: to denote the number of independent indices in an array.1 For Chris@10: example, we say that a 2d transform has rank 2, a 3d transform has Chris@10: rank 3, and so on. You can plan transforms of arbitrary rank by Chris@10: means of the following function: Chris@10: Chris@10:

     fftw_plan fftw_plan_dft(int rank, const int *n,
Chris@10:                              fftw_complex *in, fftw_complex *out,
Chris@10:                              int sign, unsigned flags);
Chris@10: 
Chris@10:

Chris@10: Here, n is a pointer to an array n[rank] denoting an Chris@10: n[0] by n[1] by ... by n[rank-1] transform. Chris@10: Thus, for example, the call Chris@10:

     fftw_plan_dft_2d(n0, n1, in, out, sign, flags);
Chris@10: 
Chris@10:

is equivalent to the following code fragment: Chris@10:

     int n[2];
Chris@10:      n[0] = n0;
Chris@10:      n[1] = n1;
Chris@10:      fftw_plan_dft(2, n, in, out, sign, flags);
Chris@10: 
Chris@10:

fftw_plan_dft is not restricted to 2d and 3d transforms, Chris@10: however, but it can plan transforms of arbitrary rank. Chris@10: Chris@10:

You may have noticed that all the planner routines described so far Chris@10: have overlapping functionality. For example, you can plan a 1d or 2d Chris@10: transform by using fftw_plan_dft with a rank of 1 Chris@10: or 2, or even by calling fftw_plan_dft_3d with n0 Chris@10: and/or n1 equal to 1 (with no loss in efficiency). This Chris@10: pattern continues, and FFTW's planning routines in general form a Chris@10: “partial order,” sequences of Chris@10: interfaces with strictly increasing generality but correspondingly Chris@10: greater complexity. Chris@10: Chris@10:

fftw_plan_dft is the most general complex-DFT routine that we Chris@10: describe in this tutorial, but there are also the advanced and guru interfaces, Chris@10: which allow one to efficiently combine multiple/strided transforms Chris@10: into a single FFTW plan, transform a subset of a larger Chris@10: multi-dimensional array, and/or to handle more general complex-number Chris@10: formats. For more information, see FFTW Reference. Chris@10: Chris@10: Chris@10:

Chris@10:
Chris@10:

Footnotes

[1] The Chris@10: term “rank” is commonly used in the APL, FORTRAN, and Common Lisp Chris@10: traditions, although it is not so common in the C world.

Chris@10: Chris@10:
Chris@10: Chris@10: Chris@10: