Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: /* This file was automatically generated --- DO NOT EDIT */ Chris@10: /* Generated on Sun Nov 25 07:36:52 EST 2012 */ Chris@10: Chris@10: #include "codelet-dft.h" Chris@10: Chris@10: #ifdef HAVE_FMA Chris@10: Chris@10: /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */ Chris@10: Chris@10: /* Chris@10: * This function contains 48 FP additions, 20 FP multiplications, Chris@10: * (or, 30 additions, 2 multiplications, 18 fused multiply/add), Chris@10: * 49 stack variables, 2 constants, and 24 memory accesses Chris@10: */ Chris@10: #include "n1f.h" Chris@10: Chris@10: static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) Chris@10: { Chris@10: DVK(KP866025403, +0.866025403784438646763723170752936183471402627); Chris@10: DVK(KP500000000, +0.500000000000000000000000000000000000000000000); Chris@10: { Chris@10: INT i; Chris@10: const R *xi; Chris@10: R *xo; Chris@10: xi = ri; Chris@10: xo = ro; Chris@10: for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { Chris@10: V T1, T6, Tk, Tn, Tc, Td, Tf, Tr, T4, Ts, T9, Tg, Te, Tl; Chris@10: { Chris@10: V T2, T3, T7, T8; Chris@10: T1 = LD(&(xi[0]), ivs, &(xi[0])); Chris@10: T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); Chris@10: T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); Chris@10: T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); Chris@10: T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); Chris@10: T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); Chris@10: Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); Chris@10: Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); Chris@10: Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); Chris@10: Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); Chris@10: Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); Chris@10: Tr = VSUB(T3, T2); Chris@10: T4 = VADD(T2, T3); Chris@10: Ts = VSUB(T8, T7); Chris@10: T9 = VADD(T7, T8); Chris@10: Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); Chris@10: } Chris@10: Te = VSUB(Tc, Td); Chris@10: Tl = VADD(Td, Tc); Chris@10: { Chris@10: V T5, TF, TB, Tt, Ta, TG, Th, To, Tm, TI; Chris@10: T5 = VFNMS(LDK(KP500000000), T4, T1); Chris@10: TF = VADD(T1, T4); Chris@10: TB = VADD(Tr, Ts); Chris@10: Tt = VSUB(Tr, Ts); Chris@10: Ta = VFNMS(LDK(KP500000000), T9, T6); Chris@10: TG = VADD(T6, T9); Chris@10: Th = VSUB(Tf, Tg); Chris@10: To = VADD(Tf, Tg); Chris@10: Tm = VFNMS(LDK(KP500000000), Tl, Tk); Chris@10: TI = VADD(Tk, Tl); Chris@10: { Chris@10: V TH, TL, Tb, Tx, TJ, Tp, Ti, TA; Chris@10: TH = VSUB(TF, TG); Chris@10: TL = VADD(TF, TG); Chris@10: Tb = VSUB(T5, Ta); Chris@10: Tx = VADD(T5, Ta); Chris@10: TJ = VADD(Tn, To); Chris@10: Tp = VFNMS(LDK(KP500000000), To, Tn); Chris@10: Ti = VADD(Te, Th); Chris@10: TA = VSUB(Te, Th); Chris@10: { Chris@10: V Tq, Ty, TK, TM; Chris@10: Tq = VSUB(Tm, Tp); Chris@10: Ty = VADD(Tm, Tp); Chris@10: TK = VSUB(TI, TJ); Chris@10: TM = VADD(TI, TJ); Chris@10: { Chris@10: V TC, TE, Tj, Tv; Chris@10: TC = VMUL(LDK(KP866025403), VSUB(TA, TB)); Chris@10: TE = VMUL(LDK(KP866025403), VADD(TB, TA)); Chris@10: Tj = VFMA(LDK(KP866025403), Ti, Tb); Chris@10: Tv = VFNMS(LDK(KP866025403), Ti, Tb); Chris@10: { Chris@10: V Tz, TD, Tu, Tw; Chris@10: Tz = VSUB(Tx, Ty); Chris@10: TD = VADD(Tx, Ty); Chris@10: Tu = VFNMS(LDK(KP866025403), Tt, Tq); Chris@10: Tw = VFMA(LDK(KP866025403), Tt, Tq); Chris@10: ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0])); Chris@10: ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0])); Chris@10: ST(&(xo[WS(os, 3)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)])); Chris@10: ST(&(xo[WS(os, 9)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)])); Chris@10: ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0])); Chris@10: ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0])); Chris@10: ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tz), ovs, &(xo[0])); Chris@10: ST(&(xo[WS(os, 2)]), VFMAI(TC, Tz), ovs, &(xo[0])); Chris@10: ST(&(xo[WS(os, 5)]), VFNMSI(Tw, Tv), ovs, &(xo[WS(os, 1)])); Chris@10: ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tv), ovs, &(xo[WS(os, 1)])); Chris@10: ST(&(xo[WS(os, 11)]), VFMAI(Tu, Tj), ovs, &(xo[WS(os, 1)])); Chris@10: ST(&(xo[WS(os, 1)]), VFNMSI(Tu, Tj), ovs, &(xo[WS(os, 1)])); Chris@10: } Chris@10: } Chris@10: } Chris@10: } Chris@10: } Chris@10: } Chris@10: } Chris@10: VLEAVE(); Chris@10: } Chris@10: Chris@10: static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 }; Chris@10: Chris@10: void XSIMD(codelet_n1fv_12) (planner *p) { Chris@10: X(kdft_register) (p, n1fv_12, &desc); Chris@10: } Chris@10: Chris@10: #else /* HAVE_FMA */ Chris@10: Chris@10: /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */ Chris@10: Chris@10: /* Chris@10: * This function contains 48 FP additions, 8 FP multiplications, Chris@10: * (or, 44 additions, 4 multiplications, 4 fused multiply/add), Chris@10: * 27 stack variables, 2 constants, and 24 memory accesses Chris@10: */ Chris@10: #include "n1f.h" Chris@10: Chris@10: static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) Chris@10: { Chris@10: DVK(KP500000000, +0.500000000000000000000000000000000000000000000); Chris@10: DVK(KP866025403, +0.866025403784438646763723170752936183471402627); Chris@10: { Chris@10: INT i; Chris@10: const R *xi; Chris@10: R *xo; Chris@10: xi = ri; Chris@10: xo = ro; Chris@10: for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { Chris@10: V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu; Chris@10: { Chris@10: V T1, T6, T4, Tw, T9, Tx; Chris@10: T1 = LD(&(xi[0]), ivs, &(xi[0])); Chris@10: T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); Chris@10: { Chris@10: V T2, T3, T7, T8; Chris@10: T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); Chris@10: T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); Chris@10: T4 = VADD(T2, T3); Chris@10: Tw = VSUB(T3, T2); Chris@10: T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); Chris@10: T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); Chris@10: T9 = VADD(T7, T8); Chris@10: Tx = VSUB(T8, T7); Chris@10: } Chris@10: T5 = VADD(T1, T4); Chris@10: Ta = VADD(T6, T9); Chris@10: TJ = VADD(Tw, Tx); Chris@10: Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx)); Chris@10: Tq = VFNMS(LDK(KP500000000), T9, T6); Chris@10: Tp = VFNMS(LDK(KP500000000), T4, T1); Chris@10: } Chris@10: { Chris@10: V Tc, Th, Tf, Ts, Tk, Tt; Chris@10: Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); Chris@10: Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); Chris@10: { Chris@10: V Td, Te, Ti, Tj; Chris@10: Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); Chris@10: Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); Chris@10: Tf = VADD(Td, Te); Chris@10: Ts = VSUB(Te, Td); Chris@10: Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); Chris@10: Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); Chris@10: Tk = VADD(Ti, Tj); Chris@10: Tt = VSUB(Tj, Ti); Chris@10: } Chris@10: Tg = VADD(Tc, Tf); Chris@10: Tl = VADD(Th, Tk); Chris@10: TI = VADD(Ts, Tt); Chris@10: TA = VFNMS(LDK(KP500000000), Tk, Th); Chris@10: Tz = VFNMS(LDK(KP500000000), Tf, Tc); Chris@10: Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt)); Chris@10: } Chris@10: { Chris@10: V Tb, Tm, Tn, To; Chris@10: Tb = VSUB(T5, Ta); Chris@10: Tm = VBYI(VSUB(Tg, Tl)); Chris@10: ST(&(xo[WS(os, 9)]), VSUB(Tb, Tm), ovs, &(xo[WS(os, 1)])); Chris@10: ST(&(xo[WS(os, 3)]), VADD(Tb, Tm), ovs, &(xo[WS(os, 1)])); Chris@10: Tn = VADD(T5, Ta); Chris@10: To = VADD(Tg, Tl); Chris@10: ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0])); Chris@10: ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0])); Chris@10: } Chris@10: { Chris@10: V Tv, TE, TC, TD, Tr, TB; Chris@10: Tr = VSUB(Tp, Tq); Chris@10: Tv = VSUB(Tr, Tu); Chris@10: TE = VADD(Tr, Tu); Chris@10: TB = VSUB(Tz, TA); Chris@10: TC = VBYI(VADD(Ty, TB)); Chris@10: TD = VBYI(VSUB(Ty, TB)); Chris@10: ST(&(xo[WS(os, 5)]), VSUB(Tv, TC), ovs, &(xo[WS(os, 1)])); Chris@10: ST(&(xo[WS(os, 11)]), VSUB(TE, TD), ovs, &(xo[WS(os, 1)])); Chris@10: ST(&(xo[WS(os, 7)]), VADD(TC, Tv), ovs, &(xo[WS(os, 1)])); Chris@10: ST(&(xo[WS(os, 1)]), VADD(TD, TE), ovs, &(xo[WS(os, 1)])); Chris@10: } Chris@10: { Chris@10: V TK, TM, TH, TL, TF, TG; Chris@10: TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ))); Chris@10: TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI))); Chris@10: TF = VADD(Tp, Tq); Chris@10: TG = VADD(Tz, TA); Chris@10: TH = VSUB(TF, TG); Chris@10: TL = VADD(TF, TG); Chris@10: ST(&(xo[WS(os, 10)]), VSUB(TH, TK), ovs, &(xo[0])); Chris@10: ST(&(xo[WS(os, 4)]), VADD(TL, TM), ovs, &(xo[0])); Chris@10: ST(&(xo[WS(os, 2)]), VADD(TH, TK), ovs, &(xo[0])); Chris@10: ST(&(xo[WS(os, 8)]), VSUB(TL, TM), ovs, &(xo[0])); Chris@10: } Chris@10: } Chris@10: } Chris@10: VLEAVE(); Chris@10: } Chris@10: Chris@10: static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 }; Chris@10: Chris@10: void XSIMD(codelet_n1fv_12) (planner *p) { Chris@10: X(kdft_register) (p, n1fv_12, &desc); Chris@10: } Chris@10: Chris@10: #endif /* HAVE_FMA */