Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: /* solvers/plans for vectors of DFTs corresponding to the columns Chris@10: of a matrix: first transpose the matrix so that the DFTs are Chris@10: contiguous, then do DFTs with transposed output. In particular, Chris@10: we restrict ourselves to the case of a square transpose (or a Chris@10: sequence thereof). */ Chris@10: Chris@10: #include "dft.h" Chris@10: Chris@10: typedef solver S; Chris@10: Chris@10: typedef struct { Chris@10: plan_dft super; Chris@10: INT vl, ivs, ovs; Chris@10: plan *cldtrans, *cld, *cldrest; Chris@10: } P; Chris@10: Chris@10: /* initial transpose is out-of-place from input to output */ Chris@10: static void apply_op(const plan *ego_, R *ri, R *ii, R *ro, R *io) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT vl = ego->vl, ivs = ego->ivs, ovs = ego->ovs, i; Chris@10: Chris@10: for (i = 0; i < vl; ++i) { Chris@10: { Chris@10: plan_dft *cldtrans = (plan_dft *) ego->cldtrans; Chris@10: cldtrans->apply(ego->cldtrans, ri, ii, ro, io); Chris@10: } Chris@10: { Chris@10: plan_dft *cld = (plan_dft *) ego->cld; Chris@10: cld->apply(ego->cld, ro, io, ro, io); Chris@10: } Chris@10: ri += ivs; ii += ivs; Chris@10: ro += ovs; io += ovs; Chris@10: } Chris@10: { Chris@10: plan_dft *cldrest = (plan_dft *) ego->cldrest; Chris@10: cldrest->apply(ego->cldrest, ri, ii, ro, io); Chris@10: } Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_destroy_internal)(ego->cldrest); Chris@10: X(plan_destroy_internal)(ego->cld); Chris@10: X(plan_destroy_internal)(ego->cldtrans); Chris@10: } Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_awake)(ego->cldtrans, wakefulness); Chris@10: X(plan_awake)(ego->cld, wakefulness); Chris@10: X(plan_awake)(ego->cldrest, wakefulness); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: p->print(p, "(indirect-transpose%v%(%p%)%(%p%)%(%p%))", Chris@10: ego->vl, ego->cldtrans, ego->cld, ego->cldrest); Chris@10: } Chris@10: Chris@10: static int pickdim(const tensor *vs, const tensor *s, int *pdim0, int *pdim1) Chris@10: { Chris@10: int dim0, dim1; Chris@10: *pdim0 = *pdim1 = -1; Chris@10: for (dim0 = 0; dim0 < vs->rnk; ++dim0) Chris@10: for (dim1 = 0; dim1 < s->rnk; ++dim1) Chris@10: if (vs->dims[dim0].n * X(iabs)(vs->dims[dim0].is) <= X(iabs)(s->dims[dim1].is) Chris@10: && vs->dims[dim0].n >= s->dims[dim1].n Chris@10: && (*pdim0 == -1 Chris@10: || (X(iabs)(vs->dims[dim0].is) <= X(iabs)(vs->dims[*pdim0].is) Chris@10: && X(iabs)(s->dims[dim1].is) >= X(iabs)(s->dims[*pdim1].is)))) { Chris@10: *pdim0 = dim0; Chris@10: *pdim1 = dim1; Chris@10: } Chris@10: return (*pdim0 != -1 && *pdim1 != -1); Chris@10: } Chris@10: Chris@10: static int applicable0(const solver *ego_, const problem *p_, Chris@10: const planner *plnr, Chris@10: int *pdim0, int *pdim1) Chris@10: { Chris@10: const problem_dft *p = (const problem_dft *) p_; Chris@10: UNUSED(ego_); UNUSED(plnr); Chris@10: Chris@10: return (1 Chris@10: && FINITE_RNK(p->vecsz->rnk) && FINITE_RNK(p->sz->rnk) Chris@10: Chris@10: /* FIXME: can/should we relax this constraint? */ Chris@10: && X(tensor_inplace_strides2)(p->vecsz, p->sz) Chris@10: Chris@10: && pickdim(p->vecsz, p->sz, pdim0, pdim1) Chris@10: Chris@10: /* output should not *already* include the transpose Chris@10: (in which case we duplicate the regular indirect.c) */ Chris@10: && (p->sz->dims[*pdim1].os != p->vecsz->dims[*pdim0].is) Chris@10: ); Chris@10: } Chris@10: Chris@10: static int applicable(const solver *ego_, const problem *p_, Chris@10: const planner *plnr, Chris@10: int *pdim0, int *pdim1) Chris@10: { Chris@10: if (!applicable0(ego_, p_, plnr, pdim0, pdim1)) return 0; Chris@10: { Chris@10: const problem_dft *p = (const problem_dft *) p_; Chris@10: INT u = p->ri == p->ii + 1 || p->ii == p->ri + 1 ? (INT)2 : (INT)1; Chris@10: Chris@10: /* UGLY if does not result in contiguous transforms or Chris@10: transforms of contiguous vectors (since the latter at Chris@10: least have efficient transpositions) */ Chris@10: if (NO_UGLYP(plnr) Chris@10: && p->vecsz->dims[*pdim0].is != u Chris@10: && !(p->vecsz->rnk == 2 Chris@10: && p->vecsz->dims[1-*pdim0].is == u Chris@10: && p->vecsz->dims[*pdim0].is Chris@10: == u * p->vecsz->dims[1-*pdim0].n)) Chris@10: return 0; Chris@10: Chris@10: if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0; Chris@10: } Chris@10: return 1; Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: const problem_dft *p = (const problem_dft *) p_; Chris@10: P *pln; Chris@10: plan *cld = 0, *cldtrans = 0, *cldrest = 0; Chris@10: int pdim0, pdim1; Chris@10: tensor *ts, *tv; Chris@10: INT vl, ivs, ovs; Chris@10: R *rit, *iit, *rot, *iot; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(dft_solve), awake, print, destroy Chris@10: }; Chris@10: Chris@10: if (!applicable(ego_, p_, plnr, &pdim0, &pdim1)) Chris@10: return (plan *) 0; Chris@10: Chris@10: vl = p->vecsz->dims[pdim0].n / p->sz->dims[pdim1].n; Chris@10: A(vl >= 1); Chris@10: ivs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].is; Chris@10: ovs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].os; Chris@10: rit = TAINT(p->ri, vl == 1 ? 0 : ivs); Chris@10: iit = TAINT(p->ii, vl == 1 ? 0 : ivs); Chris@10: rot = TAINT(p->ro, vl == 1 ? 0 : ovs); Chris@10: iot = TAINT(p->io, vl == 1 ? 0 : ovs); Chris@10: Chris@10: ts = X(tensor_copy_inplace)(p->sz, INPLACE_IS); Chris@10: ts->dims[pdim1].os = p->vecsz->dims[pdim0].is; Chris@10: tv = X(tensor_copy_inplace)(p->vecsz, INPLACE_IS); Chris@10: tv->dims[pdim0].os = p->sz->dims[pdim1].is; Chris@10: tv->dims[pdim0].n = p->sz->dims[pdim1].n; Chris@10: cldtrans = X(mkplan_d)(plnr, Chris@10: X(mkproblem_dft_d)(X(mktensor_0d)(), Chris@10: X(tensor_append)(tv, ts), Chris@10: rit, iit, Chris@10: rot, iot)); Chris@10: X(tensor_destroy2)(ts, tv); Chris@10: if (!cldtrans) goto nada; Chris@10: Chris@10: ts = X(tensor_copy)(p->sz); Chris@10: ts->dims[pdim1].is = p->vecsz->dims[pdim0].is; Chris@10: tv = X(tensor_copy)(p->vecsz); Chris@10: tv->dims[pdim0].is = p->sz->dims[pdim1].is; Chris@10: tv->dims[pdim0].n = p->sz->dims[pdim1].n; Chris@10: cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)(ts, tv, Chris@10: rot, iot, Chris@10: rot, iot)); Chris@10: if (!cld) goto nada; Chris@10: Chris@10: tv = X(tensor_copy)(p->vecsz); Chris@10: tv->dims[pdim0].n -= vl * p->sz->dims[pdim1].n; Chris@10: cldrest = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(tensor_copy)(p->sz), tv, Chris@10: p->ri + ivs * vl, Chris@10: p->ii + ivs * vl, Chris@10: p->ro + ovs * vl, Chris@10: p->io + ovs * vl)); Chris@10: if (!cldrest) goto nada; Chris@10: Chris@10: pln = MKPLAN_DFT(P, &padt, apply_op); Chris@10: pln->cldtrans = cldtrans; Chris@10: pln->cld = cld; Chris@10: pln->cldrest = cldrest; Chris@10: pln->vl = vl; Chris@10: pln->ivs = ivs; Chris@10: pln->ovs = ovs; Chris@10: X(ops_cpy)(&cldrest->ops, &pln->super.super.ops); Chris@10: X(ops_madd2)(vl, &cld->ops, &pln->super.super.ops); Chris@10: X(ops_madd2)(vl, &cldtrans->ops, &pln->super.super.ops); Chris@10: return &(pln->super.super); Chris@10: Chris@10: nada: Chris@10: X(plan_destroy_internal)(cldrest); Chris@10: X(plan_destroy_internal)(cld); Chris@10: X(plan_destroy_internal)(cldtrans); Chris@10: return (plan *)0; Chris@10: } Chris@10: Chris@10: static solver *mksolver(void) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: return slv; Chris@10: } Chris@10: Chris@10: void X(dft_indirect_transpose_register)(planner *p) Chris@10: { Chris@10: REGISTER_SOLVER(p, mksolver()); Chris@10: }