Chris@42: /* Chris@42: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@42: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@42: * Chris@42: * This program is free software; you can redistribute it and/or modify Chris@42: * it under the terms of the GNU General Public License as published by Chris@42: * the Free Software Foundation; either version 2 of the License, or Chris@42: * (at your option) any later version. Chris@42: * Chris@42: * This program is distributed in the hope that it will be useful, Chris@42: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@42: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@42: * GNU General Public License for more details. Chris@42: * Chris@42: * You should have received a copy of the GNU General Public License Chris@42: * along with this program; if not, write to the Free Software Chris@42: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@42: * Chris@42: */ Chris@42: Chris@42: Chris@42: /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This Chris@42: is mainly useful because we can use Rader to compute DHTs of prime Chris@42: sizes. It also allows us to express hc2r problems in terms of r2hc Chris@42: (via dht-r2hc), and to do hc2r problems without destroying the input. */ Chris@42: Chris@42: #include "rdft.h" Chris@42: Chris@42: typedef struct { Chris@42: solver super; Chris@42: } S; Chris@42: Chris@42: typedef struct { Chris@42: plan_rdft super; Chris@42: plan *cld; Chris@42: INT is, os; Chris@42: INT n; Chris@42: } P; Chris@42: Chris@42: static void apply_r2hc(const plan *ego_, R *I, R *O) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: INT os; Chris@42: INT i, n; Chris@42: Chris@42: { Chris@42: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@42: cld->apply((plan *) cld, I, O); Chris@42: } Chris@42: Chris@42: n = ego->n; Chris@42: os = ego->os; Chris@42: for (i = 1; i < n - i; ++i) { Chris@42: E a, b; Chris@42: a = K(0.5) * O[os * i]; Chris@42: b = K(0.5) * O[os * (n - i)]; Chris@42: O[os * i] = a + b; Chris@42: #if FFT_SIGN == -1 Chris@42: O[os * (n - i)] = b - a; Chris@42: #else Chris@42: O[os * (n - i)] = a - b; Chris@42: #endif Chris@42: } Chris@42: } Chris@42: Chris@42: /* hc2r, destroying input as usual */ Chris@42: static void apply_hc2r(const plan *ego_, R *I, R *O) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: INT is = ego->is; Chris@42: INT i, n = ego->n; Chris@42: Chris@42: for (i = 1; i < n - i; ++i) { Chris@42: E a, b; Chris@42: a = I[is * i]; Chris@42: b = I[is * (n - i)]; Chris@42: #if FFT_SIGN == -1 Chris@42: I[is * i] = a - b; Chris@42: I[is * (n - i)] = a + b; Chris@42: #else Chris@42: I[is * i] = a + b; Chris@42: I[is * (n - i)] = a - b; Chris@42: #endif Chris@42: } Chris@42: Chris@42: { Chris@42: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@42: cld->apply((plan *) cld, I, O); Chris@42: } Chris@42: } Chris@42: Chris@42: /* hc2r, without destroying input */ Chris@42: static void apply_hc2r_save(const plan *ego_, R *I, R *O) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: INT is = ego->is, os = ego->os; Chris@42: INT i, n = ego->n; Chris@42: Chris@42: O[0] = I[0]; Chris@42: for (i = 1; i < n - i; ++i) { Chris@42: E a, b; Chris@42: a = I[is * i]; Chris@42: b = I[is * (n - i)]; Chris@42: #if FFT_SIGN == -1 Chris@42: O[os * i] = a - b; Chris@42: O[os * (n - i)] = a + b; Chris@42: #else Chris@42: O[os * i] = a + b; Chris@42: O[os * (n - i)] = a - b; Chris@42: #endif Chris@42: } Chris@42: if (i == n - i) Chris@42: O[os * i] = I[is * i]; Chris@42: Chris@42: { Chris@42: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@42: cld->apply((plan *) cld, O, O); Chris@42: } Chris@42: } Chris@42: Chris@42: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@42: { Chris@42: P *ego = (P *) ego_; Chris@42: X(plan_awake)(ego->cld, wakefulness); Chris@42: } Chris@42: Chris@42: static void destroy(plan *ego_) Chris@42: { Chris@42: P *ego = (P *) ego_; Chris@42: X(plan_destroy_internal)(ego->cld); Chris@42: } Chris@42: Chris@42: static void print(const plan *ego_, printer *p) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: p->print(p, "(%s-dht-%D%(%p%))", Chris@42: ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", Chris@42: ego->n, ego->cld); Chris@42: } Chris@42: Chris@42: static int applicable0(const solver *ego_, const problem *p_) Chris@42: { Chris@42: const problem_rdft *p = (const problem_rdft *) p_; Chris@42: UNUSED(ego_); Chris@42: Chris@42: return (1 Chris@42: && p->sz->rnk == 1 Chris@42: && p->vecsz->rnk == 0 Chris@42: && (p->kind[0] == R2HC || p->kind[0] == HC2R) Chris@42: Chris@42: /* hack: size-2 DHT etc. are defined as being equivalent Chris@42: to size-2 R2HC in problem.c, so we need this to prevent Chris@42: infinite loops for size 2 in EXHAUSTIVE mode: */ Chris@42: && p->sz->dims[0].n > 2 Chris@42: ); Chris@42: } Chris@42: Chris@42: static int applicable(const solver *ego, const problem *p_, Chris@42: const planner *plnr) Chris@42: { Chris@42: return (!NO_SLOWP(plnr) && applicable0(ego, p_)); Chris@42: } Chris@42: Chris@42: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@42: { Chris@42: P *pln; Chris@42: const problem_rdft *p; Chris@42: problem *cldp; Chris@42: plan *cld; Chris@42: Chris@42: static const plan_adt padt = { Chris@42: X(rdft_solve), awake, print, destroy Chris@42: }; Chris@42: Chris@42: if (!applicable(ego_, p_, plnr)) Chris@42: return (plan *)0; Chris@42: Chris@42: p = (const problem_rdft *) p_; Chris@42: Chris@42: if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr)) Chris@42: cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT); Chris@42: else { Chris@42: tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS); Chris@42: cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT); Chris@42: X(tensor_destroy)(sz); Chris@42: } Chris@42: cld = X(mkplan_d)(plnr, cldp); Chris@42: if (!cld) return (plan *)0; Chris@42: Chris@42: pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ? Chris@42: apply_r2hc : (NO_DESTROY_INPUTP(plnr) ? Chris@42: apply_hc2r_save : apply_hc2r)); Chris@42: pln->n = p->sz->dims[0].n; Chris@42: pln->is = p->sz->dims[0].is; Chris@42: pln->os = p->sz->dims[0].os; Chris@42: pln->cld = cld; Chris@42: Chris@42: pln->super.super.ops = cld->ops; Chris@42: pln->super.super.ops.other += 4 * ((pln->n - 1)/2); Chris@42: pln->super.super.ops.add += 2 * ((pln->n - 1)/2); Chris@42: if (p->kind[0] == R2HC) Chris@42: pln->super.super.ops.mul += 2 * ((pln->n - 1)/2); Chris@42: if (pln->super.apply == apply_hc2r_save) Chris@42: pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2); Chris@42: Chris@42: return &(pln->super.super); Chris@42: } Chris@42: Chris@42: /* constructor */ Chris@42: static solver *mksolver(void) Chris@42: { Chris@42: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@42: S *slv = MKSOLVER(S, &sadt); Chris@42: return &(slv->super); Chris@42: } Chris@42: Chris@42: void X(rdft_dht_register)(planner *p) Chris@42: { Chris@42: REGISTER_SOLVER(p, mksolver()); Chris@42: }