Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: FFTW 3.3.5: Complex DFTs Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42:
Chris@42:

Chris@42: Next: , Previous: , Up: Basic Interface   [Contents][Index]

Chris@42:
Chris@42:
Chris@42: Chris@42:

4.3.1 Complex DFTs

Chris@42: Chris@42:
Chris@42:
fftw_plan fftw_plan_dft_1d(int n0,
Chris@42:                            fftw_complex *in, fftw_complex *out,
Chris@42:                            int sign, unsigned flags);
Chris@42: fftw_plan fftw_plan_dft_2d(int n0, int n1,
Chris@42:                            fftw_complex *in, fftw_complex *out,
Chris@42:                            int sign, unsigned flags);
Chris@42: fftw_plan fftw_plan_dft_3d(int n0, int n1, int n2,
Chris@42:                            fftw_complex *in, fftw_complex *out,
Chris@42:                            int sign, unsigned flags);
Chris@42: fftw_plan fftw_plan_dft(int rank, const int *n,
Chris@42:                         fftw_complex *in, fftw_complex *out,
Chris@42:                         int sign, unsigned flags);
Chris@42: 
Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: Chris@42:

Plan a complex input/output discrete Fourier transform (DFT) in zero or Chris@42: more dimensions, returning an fftw_plan (see Using Plans). Chris@42:

Chris@42:

Once you have created a plan for a certain transform type and Chris@42: parameters, then creating another plan of the same type and parameters, Chris@42: but for different arrays, is fast and shares constant data with the Chris@42: first plan (if it still exists). Chris@42:

Chris@42:

The planner returns NULL if the plan cannot be created. In the Chris@42: standard FFTW distribution, the basic interface is guaranteed to return Chris@42: a non-NULL plan. A plan may be NULL, however, if you are Chris@42: using a customized FFTW configuration supporting a restricted set of Chris@42: transforms. Chris@42:

Chris@42: Chris@42:

Arguments

Chris@42: Chris@42: Chris@42:

FFTW computes an unnormalized transform: computing a forward followed by Chris@42: a backward transform (or vice versa) will result in the original data Chris@42: multiplied by the size of the transform (the product of the dimensions). Chris@42: Chris@42: For more information, see What FFTW Really Computes. Chris@42:

Chris@42:
Chris@42:
Chris@42:

Chris@42: Next: , Previous: , Up: Basic Interface   [Contents][Index]

Chris@42:
Chris@42: Chris@42: Chris@42: Chris@42: Chris@42: