Chris@82: /* Chris@82: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@82: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@82: * Chris@82: * This program is free software; you can redistribute it and/or modify Chris@82: * it under the terms of the GNU General Public License as published by Chris@82: * the Free Software Foundation; either version 2 of the License, or Chris@82: * (at your option) any later version. Chris@82: * Chris@82: * This program is distributed in the hope that it will be useful, Chris@82: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@82: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@82: * GNU General Public License for more details. Chris@82: * Chris@82: * You should have received a copy of the GNU General Public License Chris@82: * along with this program; if not, write to the Free Software Chris@82: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@82: * Chris@82: */ Chris@82: Chris@82: #include "dft/dft.h" Chris@82: Chris@82: typedef struct { Chris@82: solver super; Chris@82: } S; Chris@82: Chris@82: typedef struct { Chris@82: plan_dft super; Chris@82: twid *td; Chris@82: INT n, is, os; Chris@82: } P; Chris@82: Chris@82: Chris@82: static void cdot(INT n, const E *x, const R *w, Chris@82: R *or0, R *oi0, R *or1, R *oi1) Chris@82: { Chris@82: INT i; Chris@82: Chris@82: E rr = x[0], ri = 0, ir = x[1], ii = 0; Chris@82: x += 2; Chris@82: for (i = 1; i + i < n; ++i) { Chris@82: rr += x[0] * w[0]; Chris@82: ir += x[1] * w[0]; Chris@82: ri += x[2] * w[1]; Chris@82: ii += x[3] * w[1]; Chris@82: x += 4; w += 2; Chris@82: } Chris@82: *or0 = rr + ii; Chris@82: *oi0 = ir - ri; Chris@82: *or1 = rr - ii; Chris@82: *oi1 = ir + ri; Chris@82: } Chris@82: Chris@82: static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o, Chris@82: R *pr, R *pi) Chris@82: { Chris@82: INT i; Chris@82: E sr, si; Chris@82: o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2; Chris@82: for (i = 1; i + i < n; ++i) { Chris@82: sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]); Chris@82: si += (o[1] = xi[i * xs] + xi[(n - i) * xs]); Chris@82: o[2] = xr[i * xs] - xr[(n - i) * xs]; Chris@82: o[3] = xi[i * xs] - xi[(n - i) * xs]; Chris@82: o += 4; Chris@82: } Chris@82: *pr = sr; Chris@82: *pi = si; Chris@82: } Chris@82: Chris@82: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) Chris@82: { Chris@82: const P *ego = (const P *) ego_; Chris@82: INT i; Chris@82: INT n = ego->n, is = ego->is, os = ego->os; Chris@82: const R *W = ego->td->W; Chris@82: E *buf; Chris@82: size_t bufsz = n * 2 * sizeof(E); Chris@82: Chris@82: BUF_ALLOC(E *, buf, bufsz); Chris@82: hartley(n, ri, ii, is, buf, ro, io); Chris@82: Chris@82: for (i = 1; i + i < n; ++i) { Chris@82: cdot(n, buf, W, Chris@82: ro + i * os, io + i * os, Chris@82: ro + (n - i) * os, io + (n - i) * os); Chris@82: W += n - 1; Chris@82: } Chris@82: Chris@82: BUF_FREE(buf, bufsz); Chris@82: } Chris@82: Chris@82: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@82: { Chris@82: P *ego = (P *) ego_; Chris@82: static const tw_instr half_tw[] = { Chris@82: { TW_HALF, 1, 0 }, Chris@82: { TW_NEXT, 1, 0 } Chris@82: }; Chris@82: Chris@82: X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n, Chris@82: (ego->n - 1) / 2); Chris@82: } Chris@82: Chris@82: static void print(const plan *ego_, printer *p) Chris@82: { Chris@82: const P *ego = (const P *) ego_; Chris@82: Chris@82: p->print(p, "(dft-generic-%D)", ego->n); Chris@82: } Chris@82: Chris@82: static int applicable(const solver *ego, const problem *p_, Chris@82: const planner *plnr) Chris@82: { Chris@82: const problem_dft *p = (const problem_dft *) p_; Chris@82: UNUSED(ego); Chris@82: Chris@82: return (1 Chris@82: && p->sz->rnk == 1 Chris@82: && p->vecsz->rnk == 0 Chris@82: && (p->sz->dims[0].n % 2) == 1 Chris@82: && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD) Chris@82: && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW) Chris@82: && X(is_prime)(p->sz->dims[0].n) Chris@82: ); Chris@82: } Chris@82: Chris@82: static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) Chris@82: { Chris@82: const problem_dft *p; Chris@82: P *pln; Chris@82: INT n; Chris@82: Chris@82: static const plan_adt padt = { Chris@82: X(dft_solve), awake, print, X(plan_null_destroy) Chris@82: }; Chris@82: Chris@82: if (!applicable(ego, p_, plnr)) Chris@82: return (plan *)0; Chris@82: Chris@82: pln = MKPLAN_DFT(P, &padt, apply); Chris@82: Chris@82: p = (const problem_dft *) p_; Chris@82: pln->n = n = p->sz->dims[0].n; Chris@82: pln->is = p->sz->dims[0].is; Chris@82: pln->os = p->sz->dims[0].os; Chris@82: pln->td = 0; Chris@82: Chris@82: pln->super.super.ops.add = (n-1) * 5; Chris@82: pln->super.super.ops.mul = 0; Chris@82: pln->super.super.ops.fma = (n-1) * (n-1) ; Chris@82: #if 0 /* these are nice pipelined sequential loads and should cost nothing */ Chris@82: pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1)); /* approximate */ Chris@82: #endif Chris@82: Chris@82: return &(pln->super.super); Chris@82: } Chris@82: Chris@82: static solver *mksolver(void) Chris@82: { Chris@82: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; Chris@82: S *slv = MKSOLVER(S, &sadt); Chris@82: return &(slv->super); Chris@82: } Chris@82: Chris@82: void X(dft_generic_register)(planner *p) Chris@82: { Chris@82: REGISTER_SOLVER(p, mksolver()); Chris@82: }