Chris@42: /* Chris@42: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@42: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@42: * Chris@42: * This program is free software; you can redistribute it and/or modify Chris@42: * it under the terms of the GNU General Public License as published by Chris@42: * the Free Software Foundation; either version 2 of the License, or Chris@42: * (at your option) any later version. Chris@42: * Chris@42: * This program is distributed in the hope that it will be useful, Chris@42: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@42: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@42: * GNU General Public License for more details. Chris@42: * Chris@42: * You should have received a copy of the GNU General Public License Chris@42: * along with this program; if not, write to the Free Software Chris@42: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@42: * Chris@42: */ Chris@42: Chris@42: #include "threads.h" Chris@42: Chris@42: typedef struct { Chris@42: plan_rdft super; Chris@42: plan *cld; Chris@42: plan **cldws; Chris@42: int nthr; Chris@42: INT r; Chris@42: } P; Chris@42: Chris@42: typedef struct { Chris@42: plan **cldws; Chris@42: R *IO; Chris@42: } PD; Chris@42: Chris@42: static void *spawn_apply(spawn_data *d) Chris@42: { Chris@42: PD *ego = (PD *) d->data; Chris@42: Chris@42: plan_hc2hc *cldw = (plan_hc2hc *) (ego->cldws[d->thr_num]); Chris@42: cldw->apply((plan *) cldw, ego->IO); Chris@42: return 0; Chris@42: } Chris@42: Chris@42: static void apply_dit(const plan *ego_, R *I, R *O) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: plan_rdft *cld; Chris@42: Chris@42: cld = (plan_rdft *) ego->cld; Chris@42: cld->apply((plan *) cld, I, O); Chris@42: Chris@42: { Chris@42: PD d; Chris@42: Chris@42: d.IO = O; Chris@42: d.cldws = ego->cldws; Chris@42: Chris@42: X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d); Chris@42: } Chris@42: } Chris@42: Chris@42: static void apply_dif(const plan *ego_, R *I, R *O) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: plan_rdft *cld; Chris@42: Chris@42: { Chris@42: PD d; Chris@42: Chris@42: d.IO = I; Chris@42: d.cldws = ego->cldws; Chris@42: Chris@42: X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d); Chris@42: } Chris@42: Chris@42: cld = (plan_rdft *) ego->cld; Chris@42: cld->apply((plan *) cld, I, O); Chris@42: } Chris@42: Chris@42: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@42: { Chris@42: P *ego = (P *) ego_; Chris@42: int i; Chris@42: X(plan_awake)(ego->cld, wakefulness); Chris@42: for (i = 0; i < ego->nthr; ++i) Chris@42: X(plan_awake)(ego->cldws[i], wakefulness); Chris@42: } Chris@42: Chris@42: static void destroy(plan *ego_) Chris@42: { Chris@42: P *ego = (P *) ego_; Chris@42: int i; Chris@42: X(plan_destroy_internal)(ego->cld); Chris@42: for (i = 0; i < ego->nthr; ++i) Chris@42: X(plan_destroy_internal)(ego->cldws[i]); Chris@42: X(ifree)(ego->cldws); Chris@42: } Chris@42: Chris@42: static void print(const plan *ego_, printer *p) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: int i; Chris@42: p->print(p, "(rdft-thr-ct-%s-x%d/%D", Chris@42: ego->super.apply == apply_dit ? "dit" : "dif", Chris@42: ego->nthr, ego->r); Chris@42: for (i = 0; i < ego->nthr; ++i) Chris@42: if (i == 0 || (ego->cldws[i] != ego->cldws[i-1] && Chris@42: (i <= 1 || ego->cldws[i] != ego->cldws[i-2]))) Chris@42: p->print(p, "%(%p%)", ego->cldws[i]); Chris@42: p->print(p, "%(%p%))", ego->cld); Chris@42: } Chris@42: Chris@42: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@42: { Chris@42: const hc2hc_solver *ego = (const hc2hc_solver *) ego_; Chris@42: const problem_rdft *p; Chris@42: P *pln = 0; Chris@42: plan *cld = 0, **cldws = 0; Chris@42: INT n, r, m, v, ivs, ovs, mcount; Chris@42: int i, nthr, plnr_nthr_save; Chris@42: INT block_size; Chris@42: iodim *d; Chris@42: Chris@42: static const plan_adt padt = { Chris@42: X(rdft_solve), awake, print, destroy Chris@42: }; Chris@42: Chris@42: if (plnr->nthr <= 1 || !X(hc2hc_applicable)(ego, p_, plnr)) Chris@42: return (plan *) 0; Chris@42: Chris@42: p = (const problem_rdft *) p_; Chris@42: d = p->sz->dims; Chris@42: n = d[0].n; Chris@42: r = X(choose_radix)(ego->r, n); Chris@42: m = n / r; Chris@42: mcount = (m + 2) / 2; Chris@42: Chris@42: X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs); Chris@42: Chris@42: block_size = (mcount + plnr->nthr - 1) / plnr->nthr; Chris@42: nthr = (int)((mcount + block_size - 1) / block_size); Chris@42: plnr_nthr_save = plnr->nthr; Chris@42: plnr->nthr = (plnr->nthr + nthr - 1) / nthr; Chris@42: Chris@42: cldws = (plan **) MALLOC(sizeof(plan *) * nthr, PLANS); Chris@42: for (i = 0; i < nthr; ++i) cldws[i] = (plan *) 0; Chris@42: Chris@42: switch (p->kind[0]) { Chris@42: case R2HC: Chris@42: for (i = 0; i < nthr; ++i) { Chris@42: cldws[i] = ego->mkcldw(ego, Chris@42: R2HC, r, m, d[0].os, v, ovs, Chris@42: i*block_size, Chris@42: (i == nthr - 1) ? Chris@42: (mcount - i*block_size) : block_size, Chris@42: p->O, plnr); Chris@42: if (!cldws[i]) goto nada; Chris@42: } Chris@42: Chris@42: plnr->nthr = plnr_nthr_save; Chris@42: Chris@42: cld = X(mkplan_d)(plnr, Chris@42: X(mkproblem_rdft_d)( Chris@42: X(mktensor_1d)(m, r * d[0].is, d[0].os), Chris@42: X(mktensor_2d)(r, d[0].is, m * d[0].os, Chris@42: v, ivs, ovs), Chris@42: p->I, p->O, p->kind) Chris@42: ); Chris@42: if (!cld) goto nada; Chris@42: Chris@42: pln = MKPLAN_RDFT(P, &padt, apply_dit); Chris@42: break; Chris@42: Chris@42: case HC2R: Chris@42: for (i = 0; i < nthr; ++i) { Chris@42: cldws[i] = ego->mkcldw(ego, Chris@42: HC2R, r, m, d[0].is, v, ivs, Chris@42: i*block_size, Chris@42: (i == nthr - 1) ? Chris@42: (mcount - i*block_size) : block_size, Chris@42: p->I, plnr); Chris@42: if (!cldws[i]) goto nada; Chris@42: } Chris@42: Chris@42: plnr->nthr = plnr_nthr_save; Chris@42: Chris@42: cld = X(mkplan_d)(plnr, Chris@42: X(mkproblem_rdft_d)( Chris@42: X(mktensor_1d)(m, d[0].is, r * d[0].os), Chris@42: X(mktensor_2d)(r, m * d[0].is, d[0].os, Chris@42: v, ivs, ovs), Chris@42: p->I, p->O, p->kind) Chris@42: ); Chris@42: if (!cld) goto nada; Chris@42: Chris@42: pln = MKPLAN_RDFT(P, &padt, apply_dif); Chris@42: break; Chris@42: Chris@42: default: Chris@42: A(0); Chris@42: } Chris@42: Chris@42: pln->cld = cld; Chris@42: pln->cldws = cldws; Chris@42: pln->nthr = nthr; Chris@42: pln->r = r; Chris@42: X(ops_zero)(&pln->super.super.ops); Chris@42: for (i = 0; i < nthr; ++i) { Chris@42: X(ops_add2)(&cldws[i]->ops, &pln->super.super.ops); Chris@42: pln->super.super.could_prune_now_p |= cldws[i]->could_prune_now_p; Chris@42: } Chris@42: X(ops_add2)(&cld->ops, &pln->super.super.ops); Chris@42: return &(pln->super.super); Chris@42: Chris@42: nada: Chris@42: if (cldws) { Chris@42: for (i = 0; i < nthr; ++i) Chris@42: X(plan_destroy_internal)(cldws[i]); Chris@42: X(ifree)(cldws); Chris@42: } Chris@42: X(plan_destroy_internal)(cld); Chris@42: return (plan *) 0; Chris@42: } Chris@42: Chris@42: hc2hc_solver *X(mksolver_hc2hc_threads)(size_t size, INT r, Chris@42: hc2hc_mkinferior mkcldw) Chris@42: { Chris@42: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@42: hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt); Chris@42: slv->r = r; Chris@42: slv->mkcldw = mkcldw; Chris@42: return slv; Chris@42: }