Chris@42: /* Chris@42: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@42: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@42: * Chris@42: * VSX SIMD implementation added 2015 Erik Lindahl. Chris@42: * Erik Lindahl places his modifications in the public domain. Chris@42: * Chris@42: * This program is free software; you can redistribute it and/or modify Chris@42: * it under the terms of the GNU General Public License as published by Chris@42: * the Free Software Foundation; either version 2 of the License, or Chris@42: * (at your option) any later version. Chris@42: * Chris@42: * This program is distributed in the hope that it will be useful, Chris@42: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@42: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@42: * GNU General Public License for more details. Chris@42: * Chris@42: * You should have received a copy of the GNU General Public License Chris@42: * along with this program; if not, write to the Free Software Chris@42: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@42: * Chris@42: */ Chris@42: Chris@42: #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) Chris@42: # error "VSX only works in single or double precision" Chris@42: #endif Chris@42: Chris@42: #ifdef FFTW_SINGLE Chris@42: # define DS(d,s) s /* single-precision option */ Chris@42: # define SUFF(name) name ## s Chris@42: #else Chris@42: # define DS(d,s) d /* double-precision option */ Chris@42: # define SUFF(name) name ## d Chris@42: #endif Chris@42: Chris@42: #define SIMD_SUFFIX _vsx /* for renaming */ Chris@42: #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */ Chris@42: #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2)) Chris@42: #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK Chris@42: Chris@42: #include Chris@42: #include Chris@42: Chris@42: typedef DS(vector double,vector float) V; Chris@42: Chris@42: #define VADD(a,b) vec_add(a,b) Chris@42: #define VSUB(a,b) vec_sub(a,b) Chris@42: #define VMUL(a,b) vec_mul(a,b) Chris@42: #define VXOR(a,b) vec_xor(a,b) Chris@42: #define UNPCKL(a,b) vec_mergel(a,b) Chris@42: #define UNPCKH(a,b) vec_mergeh(a,b) Chris@42: #ifdef FFTW_SINGLE Chris@42: # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,0,1,2,3,8,9,10,11,8,9,10,11}; vec_perm(a,a,perm); }) Chris@42: # define VDUPH(a) ({ const vector unsigned char perm = {4,5,6,7,4,5,6,7,12,13,14,15,12,13,14,15}; vec_perm(a,a,perm); }) Chris@42: #else Chris@42: # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7}; vec_perm(a,a,perm); }) Chris@42: # define VDUPH(a) ({ const vector unsigned char perm = {8,9,10,11,12,13,14,15,8,9,10,11,12,13,14,15}; vec_perm(a,a,perm); }) Chris@42: #endif Chris@42: Chris@42: static inline V LDK(R f) { return vec_splats(f); } Chris@42: Chris@42: #define DVK(var, val) const R var = K(val) Chris@42: Chris@42: static inline V VCONJ(V x) Chris@42: { Chris@42: const V pmpm = vec_mergel(vec_splats((R)0.0),-(vec_splats((R)0.0))); Chris@42: return vec_xor(x, pmpm); Chris@42: } Chris@42: Chris@42: static inline V LDA(const R *x, INT ivs, const R *aligned_like) Chris@42: { Chris@42: #ifdef __ibmxl__ Chris@42: return vec_xl(0,(DS(double,float) *)x); Chris@42: #else Chris@42: return (*(const V *)(x)); Chris@42: #endif Chris@42: } Chris@42: Chris@42: static inline void STA(R *x, V v, INT ovs, const R *aligned_like) Chris@42: { Chris@42: #ifdef __ibmxl__ Chris@42: vec_xst(v,0,x); Chris@42: #else Chris@42: *(V *)x = v; Chris@42: #endif Chris@42: } Chris@42: Chris@42: static inline V FLIP_RI(V x) Chris@42: { Chris@42: #ifdef FFTW_SINGLE Chris@42: const vector unsigned char perm = { 4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11 }; Chris@42: #else Chris@42: const vector unsigned char perm = { 8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7 }; Chris@42: #endif Chris@42: return vec_perm(x,x,perm); Chris@42: } Chris@42: Chris@42: #ifdef FFTW_SINGLE Chris@42: Chris@42: static inline V LD(const R *x, INT ivs, const R *aligned_like) Chris@42: { Chris@42: const vector unsigned char perm = {0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23}; Chris@42: Chris@42: return vec_perm((vector float)vec_splats(*(double *)(x)), Chris@42: (vector float)vec_splats(*(double *)(x+ivs)),perm); Chris@42: } Chris@42: Chris@42: static inline void ST(R *x, V v, INT ovs, const R *aligned_like) Chris@42: { Chris@42: *(double *)(x+ovs) = vec_extract( (vector double)v, 1 ); Chris@42: *(double *)x = vec_extract( (vector double)v, 0 ); Chris@42: } Chris@42: #else Chris@42: /* DOUBLE */ Chris@42: Chris@42: # define LD LDA Chris@42: # define ST STA Chris@42: Chris@42: #endif Chris@42: Chris@42: #define STM2 DS(STA,ST) Chris@42: #define STN2(x, v0, v1, ovs) /* nop */ Chris@42: Chris@42: #ifdef FFTW_SINGLE Chris@42: Chris@42: # define STM4(x, v, ovs, aligned_like) /* no-op */ Chris@42: static inline void STN4(R *x, V v0, V v1, V v2, V v3, int ovs) Chris@42: { Chris@42: V xxx0, xxx1, xxx2, xxx3; Chris@42: xxx0 = vec_mergeh(v0,v1); Chris@42: xxx1 = vec_mergel(v0,v1); Chris@42: xxx2 = vec_mergeh(v2,v3); Chris@42: xxx3 = vec_mergel(v2,v3); Chris@42: *(double *)x = vec_extract( (vector double)xxx0, 0 ); Chris@42: *(double *)(x+ovs) = vec_extract( (vector double)xxx0, 1 ); Chris@42: *(double *)(x+2*ovs) = vec_extract( (vector double)xxx1, 0 ); Chris@42: *(double *)(x+3*ovs) = vec_extract( (vector double)xxx1, 1 ); Chris@42: *(double *)(x+2) = vec_extract( (vector double)xxx2, 0 ); Chris@42: *(double *)(x+ovs+2) = vec_extract( (vector double)xxx2, 1 ); Chris@42: *(double *)(x+2*ovs+2) = vec_extract( (vector double)xxx3, 0 ); Chris@42: *(double *)(x+3*ovs+2) = vec_extract( (vector double)xxx3, 1 ); Chris@42: } Chris@42: #else /* !FFTW_SINGLE */ Chris@42: Chris@42: static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) Chris@42: { Chris@42: (void)aligned_like; /* UNUSED */ Chris@42: x[0] = vec_extract(v,0); Chris@42: x[ovs] = vec_extract(v,1); Chris@42: } Chris@42: # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */ Chris@42: #endif Chris@42: Chris@42: static inline V VBYI(V x) Chris@42: { Chris@42: /* Complicated low-level stuff. vpermxor is really a cryptographic instruction that is only Chris@42: * available in the low-level inteface both for GCC and XLC. However, on little-endian Chris@42: * platforms there is also the complicated swapping going on. XLC does this here too, but Chris@42: * not GCC, so we need different permute constants. Chris@42: */ Chris@42: #if defined(__POWER8_VECTOR__) && defined(__GNUC__) && defined(__LITTLE_ENDIAN__) Chris@42: # ifdef FFTW_SINGLE Chris@42: const vector unsigned char perm = { 0xbb, 0xaa, 0x99, 0x88, 0xff, 0xee, 0xdd, 0xcc, 0x33, 0x22, 0x11, 0x00, 0x77, 0x66, 0x55, 0x44 }; Chris@42: # else Chris@42: const vector unsigned char perm = { 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11, 0x00, 0xff, 0xee, 0xdd, 0xcc, 0xbb, 0xaa, 0x99, 0x88 }; Chris@42: # endif Chris@42: const V pmpm = vec_mergel(vec_splats((R)0.0),-(vec_splats((R)0.0))); Chris@42: return (V)__builtin_crypto_vpermxor((vector unsigned char)x,(vector unsigned char)pmpm,perm); Chris@42: #elif defined(__POWER8_VECTOR__) && (defined(__ibmxl__) || (defined(__GNUC__) && !defined(__LITTLE_ENDIAN__))) Chris@42: # ifdef FFTW_SINGLE Chris@42: const vector unsigned char perm = { 0x44, 0x55, 0x66, 0x77, 0x00, 0x11, 0x22, 0x33, 0xCC, 0xDD, 0xEE, 0xFF, 0x88, 0x99, 0xAA, 0xBB }; Chris@42: # else Chris@42: const vector unsigned char perm = { 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 }; Chris@42: # endif Chris@42: const V pmpm = vec_mergel(vec_splats((R)0.0),-(vec_splats((R)0.0))); Chris@42: return (V)__vpermxor((vector unsigned char)x,(vector unsigned char)pmpm,perm); Chris@42: #else Chris@42: /* The safe option */ Chris@42: return FLIP_RI(VCONJ(x)); Chris@42: #endif Chris@42: } Chris@42: Chris@42: /* FMA support */ Chris@42: #define VFMA(a, b, c) vec_madd(a,b,c) Chris@42: #define VFNMS(a, b, c) vec_nmsub(a,b,c) Chris@42: #define VFMS(a, b, c) vec_msub(a,b,c) Chris@42: #define VFMAI(b, c) VADD(c, VBYI(b)) Chris@42: #define VFNMSI(b, c) VSUB(c, VBYI(b)) Chris@42: #define VFMACONJ(b,c) VADD(VCONJ(b),c) Chris@42: #define VFMSCONJ(b,c) VSUB(VCONJ(b),c) Chris@42: #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b)) Chris@42: Chris@42: static inline V VZMUL(V tx, V sr) Chris@42: { Chris@42: V tr = VDUPL(tx); Chris@42: V ti = VDUPH(tx); Chris@42: tr = VMUL(sr, tr); Chris@42: sr = VBYI(sr); Chris@42: return VFMA(ti, sr, tr); Chris@42: } Chris@42: Chris@42: static inline V VZMULJ(V tx, V sr) Chris@42: { Chris@42: V tr = VDUPL(tx); Chris@42: V ti = VDUPH(tx); Chris@42: tr = VMUL(sr, tr); Chris@42: sr = VBYI(sr); Chris@42: return VFNMS(ti, sr, tr); Chris@42: } Chris@42: Chris@42: static inline V VZMULI(V tx, V sr) Chris@42: { Chris@42: V tr = VDUPL(tx); Chris@42: V ti = VDUPH(tx); Chris@42: ti = VMUL(ti, sr); Chris@42: sr = VBYI(sr); Chris@42: return VFMS(tr, sr, ti); Chris@42: } Chris@42: Chris@42: static inline V VZMULIJ(V tx, V sr) Chris@42: { Chris@42: V tr = VDUPL(tx); Chris@42: V ti = VDUPH(tx); Chris@42: ti = VMUL(ti, sr); Chris@42: sr = VBYI(sr); Chris@42: return VFMA(tr, sr, ti); Chris@42: } Chris@42: Chris@42: /* twiddle storage #1: compact, slower */ Chris@42: #ifdef FFTW_SINGLE Chris@42: # define VTW1(v,x) \ Chris@42: {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} Chris@42: static inline V BYTW1(const R *t, V sr) Chris@42: { Chris@42: V tx = LDA(t,0,t); Chris@42: V tr = UNPCKH(tx, tx); Chris@42: V ti = UNPCKL(tx, tx); Chris@42: tr = VMUL(tr, sr); Chris@42: sr = VBYI(sr); Chris@42: return VFMA(ti, sr, tr); Chris@42: } Chris@42: static inline V BYTWJ1(const R *t, V sr) Chris@42: { Chris@42: V tx = LDA(t,0,t); Chris@42: V tr = UNPCKH(tx, tx); Chris@42: V ti = UNPCKL(tx, tx); Chris@42: tr = VMUL(tr, sr); Chris@42: sr = VBYI(sr); Chris@42: return VFNMS(ti, sr, tr); Chris@42: } Chris@42: #else /* !FFTW_SINGLE */ Chris@42: # define VTW1(v,x) {TW_CEXP, v, x} Chris@42: static inline V BYTW1(const R *t, V sr) Chris@42: { Chris@42: V tx = LD(t, 1, t); Chris@42: return VZMUL(tx, sr); Chris@42: } Chris@42: static inline V BYTWJ1(const R *t, V sr) Chris@42: { Chris@42: V tx = LD(t, 1, t); Chris@42: return VZMULJ(tx, sr); Chris@42: } Chris@42: #endif Chris@42: #define TWVL1 (VL) Chris@42: Chris@42: /* twiddle storage #2: twice the space, faster (when in cache) */ Chris@42: #ifdef FFTW_SINGLE Chris@42: # define VTW2(v,x) \ Chris@42: {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ Chris@42: {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} Chris@42: #else /* !FFTW_SINGLE */ Chris@42: # define VTW2(v,x) \ Chris@42: {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x} Chris@42: #endif Chris@42: #define TWVL2 (2 * VL) Chris@42: static inline V BYTW2(const R *t, V sr) Chris@42: { Chris@42: V si = FLIP_RI(sr); Chris@42: V ti = LDA(t+2*VL,0,t); Chris@42: V tt = VMUL(ti, si); Chris@42: V tr = LDA(t,0,t); Chris@42: return VFMA(tr, sr, tt); Chris@42: } Chris@42: static inline V BYTWJ2(const R *t, V sr) Chris@42: { Chris@42: V si = FLIP_RI(sr); Chris@42: V tr = LDA(t,0,t); Chris@42: V tt = VMUL(tr, sr); Chris@42: V ti = LDA(t+2*VL,0,t); Chris@42: return VFNMS(ti, si, tt); Chris@42: } Chris@42: Chris@42: /* twiddle storage #3 */ Chris@42: #ifdef FFTW_SINGLE Chris@42: # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} Chris@42: # define TWVL3 (VL) Chris@42: #else Chris@42: # define VTW3(v,x) VTW1(v,x) Chris@42: # define TWVL3 TWVL1 Chris@42: #endif Chris@42: Chris@42: /* twiddle storage for split arrays */ Chris@42: #ifdef FFTW_SINGLE Chris@42: # define VTWS(v,x) \ Chris@42: {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ Chris@42: {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} Chris@42: #else Chris@42: # define VTWS(v,x) \ Chris@42: {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} Chris@42: #endif Chris@42: #define TWVLS (2 * VL) Chris@42: Chris@42: #define VLEAVE() /* nothing */ Chris@42: Chris@42: #include "simd-common.h"