Chris@42: /* Chris@42: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@42: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@42: * Chris@42: * This program is free software; you can redistribute it and/or modify Chris@42: * it under the terms of the GNU General Public License as published by Chris@42: * the Free Software Foundation; either version 2 of the License, or Chris@42: * (at your option) any later version. Chris@42: * Chris@42: * This program is distributed in the hope that it will be useful, Chris@42: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@42: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@42: * GNU General Public License for more details. Chris@42: * Chris@42: * You should have received a copy of the GNU General Public License Chris@42: * along with this program; if not, write to the Free Software Chris@42: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@42: * Chris@42: */ Chris@42: Chris@42: #include "rdft.h" Chris@42: Chris@42: typedef struct { Chris@42: solver super; Chris@42: rdft_kind kind; Chris@42: } S; Chris@42: Chris@42: typedef struct { Chris@42: plan_rdft super; Chris@42: twid *td; Chris@42: INT n, is, os; Chris@42: rdft_kind kind; Chris@42: } P; Chris@42: Chris@42: /***************************************************************************/ Chris@42: Chris@42: static void cdot_r2hc(INT n, const E *x, const R *w, R *or0, R *oi1) Chris@42: { Chris@42: INT i; Chris@42: Chris@42: E rr = x[0], ri = 0; Chris@42: x += 1; Chris@42: for (i = 1; i + i < n; ++i) { Chris@42: rr += x[0] * w[0]; Chris@42: ri += x[1] * w[1]; Chris@42: x += 2; w += 2; Chris@42: } Chris@42: *or0 = rr; Chris@42: *oi1 = ri; Chris@42: } Chris@42: Chris@42: static void hartley_r2hc(INT n, const R *xr, INT xs, E *o, R *pr) Chris@42: { Chris@42: INT i; Chris@42: E sr; Chris@42: o[0] = sr = xr[0]; o += 1; Chris@42: for (i = 1; i + i < n; ++i) { Chris@42: R a, b; Chris@42: a = xr[i * xs]; Chris@42: b = xr[(n - i) * xs]; Chris@42: sr += (o[0] = a + b); Chris@42: #if FFT_SIGN == -1 Chris@42: o[1] = b - a; Chris@42: #else Chris@42: o[1] = a - b; Chris@42: #endif Chris@42: o += 2; Chris@42: } Chris@42: *pr = sr; Chris@42: } Chris@42: Chris@42: static void apply_r2hc(const plan *ego_, R *I, R *O) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: INT i; Chris@42: INT n = ego->n, is = ego->is, os = ego->os; Chris@42: const R *W = ego->td->W; Chris@42: E *buf; Chris@42: size_t bufsz = n * sizeof(E); Chris@42: Chris@42: BUF_ALLOC(E *, buf, bufsz); Chris@42: hartley_r2hc(n, I, is, buf, O); Chris@42: Chris@42: for (i = 1; i + i < n; ++i) { Chris@42: cdot_r2hc(n, buf, W, O + i * os, O + (n - i) * os); Chris@42: W += n - 1; Chris@42: } Chris@42: Chris@42: BUF_FREE(buf, bufsz); Chris@42: } Chris@42: Chris@42: Chris@42: static void cdot_hc2r(INT n, const E *x, const R *w, R *or0, R *or1) Chris@42: { Chris@42: INT i; Chris@42: Chris@42: E rr = x[0], ii = 0; Chris@42: x += 1; Chris@42: for (i = 1; i + i < n; ++i) { Chris@42: rr += x[0] * w[0]; Chris@42: ii += x[1] * w[1]; Chris@42: x += 2; w += 2; Chris@42: } Chris@42: #if FFT_SIGN == -1 Chris@42: *or0 = rr - ii; Chris@42: *or1 = rr + ii; Chris@42: #else Chris@42: *or0 = rr + ii; Chris@42: *or1 = rr - ii; Chris@42: #endif Chris@42: } Chris@42: Chris@42: static void hartley_hc2r(INT n, const R *x, INT xs, E *o, R *pr) Chris@42: { Chris@42: INT i; Chris@42: E sr; Chris@42: Chris@42: o[0] = sr = x[0]; o += 1; Chris@42: for (i = 1; i + i < n; ++i) { Chris@42: sr += (o[0] = x[i * xs] + x[i * xs]); Chris@42: o[1] = x[(n - i) * xs] + x[(n - i) * xs]; Chris@42: o += 2; Chris@42: } Chris@42: *pr = sr; Chris@42: } Chris@42: Chris@42: static void apply_hc2r(const plan *ego_, R *I, R *O) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: INT i; Chris@42: INT n = ego->n, is = ego->is, os = ego->os; Chris@42: const R *W = ego->td->W; Chris@42: E *buf; Chris@42: size_t bufsz = n * sizeof(E); Chris@42: Chris@42: BUF_ALLOC(E *, buf, bufsz); Chris@42: hartley_hc2r(n, I, is, buf, O); Chris@42: Chris@42: for (i = 1; i + i < n; ++i) { Chris@42: cdot_hc2r(n, buf, W, O + i * os, O + (n - i) * os); Chris@42: W += n - 1; Chris@42: } Chris@42: Chris@42: BUF_FREE(buf, bufsz); Chris@42: } Chris@42: Chris@42: Chris@42: /***************************************************************************/ Chris@42: Chris@42: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@42: { Chris@42: P *ego = (P *) ego_; Chris@42: static const tw_instr half_tw[] = { Chris@42: { TW_HALF, 1, 0 }, Chris@42: { TW_NEXT, 1, 0 } Chris@42: }; Chris@42: Chris@42: X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n, Chris@42: (ego->n - 1) / 2); Chris@42: } Chris@42: Chris@42: static void print(const plan *ego_, printer *p) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: Chris@42: p->print(p, "(rdft-generic-%s-%D)", Chris@42: ego->kind == R2HC ? "r2hc" : "hc2r", Chris@42: ego->n); Chris@42: } Chris@42: Chris@42: static int applicable(const S *ego, const problem *p_, Chris@42: const planner *plnr) Chris@42: { Chris@42: const problem_rdft *p = (const problem_rdft *) p_; Chris@42: return (1 Chris@42: && p->sz->rnk == 1 Chris@42: && p->vecsz->rnk == 0 Chris@42: && (p->sz->dims[0].n % 2) == 1 Chris@42: && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD) Chris@42: && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW) Chris@42: && X(is_prime)(p->sz->dims[0].n) Chris@42: && p->kind[0] == ego->kind Chris@42: ); Chris@42: } Chris@42: Chris@42: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@42: { Chris@42: const S *ego = (const S *)ego_; Chris@42: const problem_rdft *p; Chris@42: P *pln; Chris@42: INT n; Chris@42: Chris@42: static const plan_adt padt = { Chris@42: X(rdft_solve), awake, print, X(plan_null_destroy) Chris@42: }; Chris@42: Chris@42: if (!applicable(ego, p_, plnr)) Chris@42: return (plan *)0; Chris@42: Chris@42: p = (const problem_rdft *) p_; Chris@42: pln = MKPLAN_RDFT(P, &padt, Chris@42: R2HC_KINDP(p->kind[0]) ? apply_r2hc : apply_hc2r); Chris@42: Chris@42: pln->n = n = p->sz->dims[0].n; Chris@42: pln->is = p->sz->dims[0].is; Chris@42: pln->os = p->sz->dims[0].os; Chris@42: pln->td = 0; Chris@42: pln->kind = ego->kind; Chris@42: Chris@42: pln->super.super.ops.add = (n-1) * 2.5; Chris@42: pln->super.super.ops.mul = 0; Chris@42: pln->super.super.ops.fma = 0.5 * (n-1) * (n-1) ; Chris@42: #if 0 /* these are nice pipelined sequential loads and should cost nothing */ Chris@42: pln->super.super.ops.other = (n-1)*(2 + 1 + (n-1)); /* approximate */ Chris@42: #endif Chris@42: Chris@42: return &(pln->super.super); Chris@42: } Chris@42: Chris@42: static solver *mksolver(rdft_kind kind) Chris@42: { Chris@42: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@42: S *slv = MKSOLVER(S, &sadt); Chris@42: slv->kind = kind; Chris@42: return &(slv->super); Chris@42: } Chris@42: Chris@42: void X(rdft_generic_register)(planner *p) Chris@42: { Chris@42: REGISTER_SOLVER(p, mksolver(R2HC)); Chris@42: REGISTER_SOLVER(p, mksolver(HC2R)); Chris@42: }