Chris@42: (* Chris@42: * Copyright (c) 1997-1999 Massachusetts Institute of Technology Chris@42: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@42: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@42: * Chris@42: * This program is free software; you can redistribute it and/or modify Chris@42: * it under the terms of the GNU General Public License as published by Chris@42: * the Free Software Foundation; either version 2 of the License, or Chris@42: * (at your option) any later version. Chris@42: * Chris@42: * This program is distributed in the hope that it will be useful, Chris@42: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@42: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@42: * GNU General Public License for more details. Chris@42: * Chris@42: * You should have received a copy of the GNU General Public License Chris@42: * along with this program; if not, write to the Free Software Chris@42: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@42: * Chris@42: *) Chris@42: Chris@42: (* utilities common to all generators *) Chris@42: open Util Chris@42: Chris@42: let choose_simd a b = if !Simdmagic.simd_mode then b else a Chris@42: Chris@42: let unique_array n = array n (fun _ -> Unique.make ()) Chris@42: let unique_array_c n = Chris@42: array n (fun _ -> Chris@42: (Unique.make (), Unique.make ())) Chris@42: Chris@42: let unique_v_array_c veclen n = Chris@42: array veclen (fun _ -> Chris@42: unique_array_c n) Chris@42: Chris@42: let locative_array_c n rarr iarr loc vs = Chris@42: array n (fun i -> Chris@42: let klass = Unique.make () in Chris@42: let (rloc, iloc) = loc i in Chris@42: (Variable.make_locative rloc klass rarr i vs, Chris@42: Variable.make_locative iloc klass iarr i vs)) Chris@42: Chris@42: let locative_v_array_c veclen n rarr iarr loc vs = Chris@42: array veclen (fun v -> Chris@42: array n (fun i -> Chris@42: let klass = Unique.make () in Chris@42: let (rloc, iloc) = loc v i in Chris@42: (Variable.make_locative rloc klass (rarr v) i vs, Chris@42: Variable.make_locative iloc klass (iarr v) i vs))) Chris@42: Chris@42: let temporary_array n = Chris@42: array n (fun i -> Variable.make_temporary ()) Chris@42: Chris@42: let temporary_array_c n = Chris@42: let tmpr = temporary_array n Chris@42: and tmpi = temporary_array n Chris@42: in Chris@42: array n (fun i -> (tmpr i, tmpi i)) Chris@42: Chris@42: let temporary_v_array_c veclen n = Chris@42: array veclen (fun v -> temporary_array_c n) Chris@42: Chris@42: let temporary_array_c n = Chris@42: let tmpr = temporary_array n Chris@42: and tmpi = temporary_array n Chris@42: in Chris@42: array n (fun i -> (tmpr i, tmpi i)) Chris@42: Chris@42: let load_c (vr, vi) = Complex.make (Expr.Load vr, Expr.Load vi) Chris@42: let load_r (vr, vi) = Complex.make (Expr.Load vr, Expr.Num (Number.zero)) Chris@42: Chris@42: let twiddle_array nt w = Chris@42: array (nt/2) (fun i -> Chris@42: let stride = choose_simd (C.SInteger 1) (C.SConst "TWVL") Chris@42: and klass = Unique.make () in Chris@42: let (refr, refi) = (C.array_subscript w stride (2 * i), Chris@42: C.array_subscript w stride (2 * i + 1)) Chris@42: in Chris@42: let (kr, ki) = (Variable.make_constant klass refr, Chris@42: Variable.make_constant klass refi) Chris@42: in Chris@42: load_c (kr, ki)) Chris@42: Chris@42: Chris@42: let load_array_c n var = array n (fun i -> load_c (var i)) Chris@42: let load_array_r n var = array n (fun i -> load_r (var i)) Chris@42: let load_array_hc n var = Chris@42: array n (fun i -> Chris@42: if (i < n - i) then Chris@42: load_c (var i) Chris@42: else if (i > n - i) then Chris@42: Complex.times Complex.i (load_c (var (n - i))) Chris@42: else Chris@42: load_r (var i)) Chris@42: Chris@42: let load_v_array_c veclen n var = Chris@42: array veclen (fun v -> load_array_c n (var v)) Chris@42: Chris@42: let store_c (vr, vi) x = [Complex.store_real vr x; Complex.store_imag vi x] Chris@42: let store_r (vr, vi) x = Complex.store_real vr x Chris@42: let store_i (vr, vi) x = Complex.store_imag vi x Chris@42: Chris@42: let assign_array_c n dst src = Chris@42: List.flatten Chris@42: (rmap (iota n) Chris@42: (fun i -> Chris@42: let (ar, ai) = Complex.assign (dst i) (src i) Chris@42: in [ar; ai])) Chris@42: let assign_v_array_c veclen n dst src = Chris@42: List.flatten Chris@42: (rmap (iota veclen) Chris@42: (fun v -> Chris@42: assign_array_c n (dst v) (src v))) Chris@42: Chris@42: let vassign_v_array_c veclen n dst src = Chris@42: List.flatten Chris@42: (rmap (iota n) (fun i -> Chris@42: List.flatten Chris@42: (rmap (iota veclen) Chris@42: (fun v -> Chris@42: let (ar, ai) = Complex.assign (dst v i) (src v i) Chris@42: in [ar; ai])))) Chris@42: Chris@42: let store_array_r n dst src = Chris@42: rmap (iota n) Chris@42: (fun i -> store_r (dst i) (src i)) Chris@42: Chris@42: let store_array_c n dst src = Chris@42: List.flatten Chris@42: (rmap (iota n) Chris@42: (fun i -> store_c (dst i) (src i))) Chris@42: Chris@42: let store_array_hc n dst src = Chris@42: List.flatten Chris@42: (rmap (iota n) Chris@42: (fun i -> Chris@42: if (i < n - i) then Chris@42: store_c (dst i) (src i) Chris@42: else if (i > n - i) then Chris@42: [] Chris@42: else Chris@42: [store_r (dst i) (Complex.real (src i))])) Chris@42: Chris@42: Chris@42: let store_v_array_c veclen n dst src = Chris@42: List.flatten Chris@42: (rmap (iota veclen) Chris@42: (fun v -> Chris@42: store_array_c n (dst v) (src v))) Chris@42: Chris@42: Chris@42: let elementwise f n a = array n (fun i -> f (a i)) Chris@42: let conj_array_c = elementwise Complex.conj Chris@42: let real_array_c = elementwise Complex.real Chris@42: let imag_array_c = elementwise Complex.imag Chris@42: Chris@42: let elementwise_v f veclen n a = Chris@42: array veclen (fun v -> Chris@42: array n (fun i -> f (a v i))) Chris@42: let conj_v_array_c = elementwise_v Complex.conj Chris@42: let real_v_array_c = elementwise_v Complex.real Chris@42: let imag_v_array_c = elementwise_v Complex.imag Chris@42: Chris@42: Chris@42: let transpose f i j = f j i Chris@42: let symmetrize f i j = if i <= j then f i j else f j i Chris@42: Chris@42: (* utilities for command-line parsing *) Chris@42: let standard_arg_parse_fail _ = failwith "too many arguments" Chris@42: Chris@42: let dump_dag alist = Chris@42: let fnam = !Magic.dag_dump_file in Chris@42: if (String.length fnam > 0) then Chris@42: let ochan = open_out fnam in Chris@42: begin Chris@42: To_alist.dump (output_string ochan) alist; Chris@42: close_out ochan; Chris@42: end Chris@42: Chris@42: let dump_alist alist = Chris@42: let fnam = !Magic.alist_dump_file in Chris@42: if (String.length fnam > 0) then Chris@42: let ochan = open_out fnam in Chris@42: begin Chris@42: Expr.dump (output_string ochan) alist; Chris@42: close_out ochan; Chris@42: end Chris@42: Chris@42: let dump_asched asched = Chris@42: let fnam = !Magic.asched_dump_file in Chris@42: if (String.length fnam > 0) then Chris@42: let ochan = open_out fnam in Chris@42: begin Chris@42: Annotate.dump (output_string ochan) asched; Chris@42: close_out ochan; Chris@42: end Chris@42: Chris@42: (* utilities for optimization *) Chris@42: let standard_scheduler dag = Chris@42: let optim = Algsimp.algsimp dag in Chris@42: let alist = To_alist.to_assignments optim in Chris@42: let _ = dump_alist alist in Chris@42: let _ = dump_dag alist in Chris@42: if !Magic.precompute_twiddles then Chris@42: Schedule.isolate_precomputations_and_schedule alist Chris@42: else Chris@42: Schedule.schedule alist Chris@42: Chris@42: let standard_optimizer dag = Chris@42: let sched = standard_scheduler dag in Chris@42: let annot = Annotate.annotate [] sched in Chris@42: let _ = dump_asched annot in Chris@42: annot Chris@42: Chris@42: let size = ref None Chris@42: let sign = ref (-1) Chris@42: Chris@42: let speclist = [ Chris@42: "-n", Arg.Int(fun i -> size := Some i), " generate a codelet of size "; Chris@42: "-sign", Chris@42: Arg.Int(fun i -> Chris@42: if (i > 0) then Chris@42: sign := 1 Chris@42: else Chris@42: sign := (-1)), Chris@42: " sign of transform"; Chris@42: ] Chris@42: Chris@42: let check_size () = Chris@42: match !size with Chris@42: | Some i -> i Chris@42: | None -> failwith "must specify -n" Chris@42: Chris@42: let expand_name name = if name = "" then "noname" else name Chris@42: Chris@42: let declare_register_fcn name = Chris@42: if name = "" then Chris@42: "void NAME(planner *p)\n" Chris@42: else Chris@42: "void " ^ (choose_simd "X" "XSIMD") ^ Chris@42: "(codelet_" ^ name ^ ")(planner *p)\n" Chris@42: Chris@42: let stringify name = Chris@42: if name = "" then "STRINGIZE(NAME)" else Chris@42: choose_simd ("\"" ^ name ^ "\"") Chris@42: ("XSIMD_STRING(\"" ^ name ^ "\")") Chris@42: Chris@42: let parse user_speclist usage = Chris@42: Arg.parse Chris@42: (user_speclist @ speclist @ Magic.speclist @ Simdmagic.speclist) Chris@42: standard_arg_parse_fail Chris@42: usage Chris@42: Chris@42: let rec list_to_c = function Chris@42: [] -> "" Chris@42: | [a] -> (string_of_int a) Chris@42: | a :: b -> (string_of_int a) ^ ", " ^ (list_to_c b) Chris@42: Chris@42: let rec list_to_comma = function Chris@42: | [a; b] -> C.Comma (a, b) Chris@42: | a :: b -> C.Comma (a, list_to_comma b) Chris@42: | _ -> failwith "list_to_comma" Chris@42: Chris@42: Chris@42: type stride = Stride_variable | Fixed_int of int | Fixed_string of string Chris@42: Chris@42: let either_stride a b = Chris@42: match a with Chris@42: Fixed_int x -> C.SInteger x Chris@42: | Fixed_string x -> C.SConst x Chris@42: | _ -> b Chris@42: Chris@42: let stride_fixed = function Chris@42: Stride_variable -> false Chris@42: | _ -> true Chris@42: Chris@42: let arg_to_stride s = Chris@42: try Chris@42: Fixed_int (int_of_string s) Chris@42: with Failure "int_of_string" -> Chris@42: Fixed_string s Chris@42: Chris@42: let stride_to_solverparm = function Chris@42: Stride_variable -> "0" Chris@42: | Fixed_int x -> string_of_int x Chris@42: | Fixed_string x -> x Chris@42: Chris@42: let stride_to_string s = function Chris@42: Stride_variable -> s Chris@42: | Fixed_int x -> string_of_int x Chris@42: | Fixed_string x -> x Chris@42: Chris@42: (* output the command line *) Chris@42: let cmdline () = Chris@42: List.fold_right (fun a b -> a ^ " " ^ b) (Array.to_list Sys.argv) "" Chris@42: Chris@42: let unparse tree = Chris@42: "/* Generated by: " ^ (cmdline ()) ^ "*/\n\n" ^ Chris@42: (C.print_cost tree) ^ Chris@42: (if String.length !Magic.inklude > 0 Chris@42: then Chris@42: (Printf.sprintf "#include \"%s\"\n\n" !Magic.inklude) Chris@42: else "") ^ Chris@42: (if !Simdmagic.simd_mode then Chris@42: Simd.unparse_function tree Chris@42: else Chris@42: C.unparse_function tree) Chris@42: Chris@42: let finalize_fcn ast = Chris@42: let mergedecls = function Chris@42: C.Block (d1, [C.Block (d2, s)]) -> C.Block (d1 @ d2, s) Chris@42: | x -> x Chris@42: and extract_constants = Chris@42: if !Simdmagic.simd_mode then Chris@42: Simd.extract_constants Chris@42: else Chris@42: C.extract_constants Chris@42: Chris@42: in mergedecls (C.Block (extract_constants ast, [ast; C.Simd_leavefun])) Chris@42: Chris@42: let twinstr_to_string vl x = Chris@42: if !Simdmagic.simd_mode then Chris@42: Twiddle.twinstr_to_simd_string vl x Chris@42: else Chris@42: Twiddle.twinstr_to_c_string x Chris@42: Chris@42: let make_volatile_stride n x = Chris@42: C.CCall ("MAKE_VOLATILE_STRIDE", C.Comma((C.Integer n), x))