view src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft2_16.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-11 Matteo Frigo
 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Sun Nov 25 07:40:50 EST 2012 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include hc2cf.h */

/*
 * This function contains 228 FP additions, 166 FP multiplications,
 * (or, 136 additions, 74 multiplications, 92 fused multiply/add),
 * 103 stack variables, 4 constants, and 64 memory accesses
 */
#include "hc2cf.h"

static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
     {
	  INT m;
	  for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) {
	       E T4p, T4o, T4n, T4s;
	       {
		    E T1, T2, Tw, Ty, Th, T3, Tx, TE, Ti, TK, Tj, T4, T5;
		    T1 = W[0];
		    T2 = W[2];
		    Tw = W[6];
		    Ty = W[7];
		    Th = W[4];
		    T3 = T1 * T2;
		    Tx = T1 * Tw;
		    TE = T1 * Ty;
		    Ti = T1 * Th;
		    TK = T2 * Th;
		    Tj = W[5];
		    T4 = W[1];
		    T5 = W[3];
		    {
			 E T1v, T2q, T1s, T2s, T38, T3T, T1Y, T3P, T17, T1h, T2x, T2v, T33, T3Q, T3S;
			 E T1N, Tv, T3A, T2E, T3B, T3L, T2c, T3I, T2S, TW, T3E, T3J, T2n, T3D, T2J;
			 E T3M, T2X;
			 {
			      E TF, Tk, Tz, TL, T6, TR, Tq, Tc, T2h, T25, T2k, T29, T1G, T1M, T2P;
			      E T2R;
			      {
				   E T18, TY, T1d, T13, T1H, T1A, T1K, T1E, T37, T1R, T35, T1X;
				   {
					E T1j, T1o, T1W, T1p, T1m, T1Q, T1U, T1q;
					{
					     E T1k, T1l, T1S, T1T;
					     {
						  E T1t, T28, T24, T1D, T1z, T1u, TQ, Tp, Tb;
						  T1t = Ip[0];
						  TQ = T2 * Tj;
						  Tp = T1 * Tj;
						  TF = FNMS(T4, Tw, TE);
						  T1j = FMA(T4, Tj, Ti);
						  Tk = FNMS(T4, Tj, Ti);
						  Tz = FMA(T4, Ty, Tx);
						  T18 = FNMS(T5, Tj, TK);
						  TL = FMA(T5, Tj, TK);
						  TY = FNMS(T4, T5, T3);
						  T6 = FMA(T4, T5, T3);
						  Tb = T1 * T5;
						  TR = FNMS(T5, Th, TQ);
						  T1d = FMA(T5, Th, TQ);
						  Tq = FMA(T4, Th, Tp);
						  T1o = FNMS(T4, Th, Tp);
						  T28 = T6 * Tj;
						  T24 = T6 * Th;
						  T1D = TY * Tj;
						  T1z = TY * Th;
						  Tc = FNMS(T4, T2, Tb);
						  T13 = FMA(T4, T2, Tb);
						  T1u = Im[0];
						  T1k = Ip[WS(rs, 4)];
						  T2h = FMA(Tc, Tj, T24);
						  T25 = FNMS(Tc, Tj, T24);
						  T2k = FNMS(Tc, Th, T28);
						  T29 = FMA(Tc, Th, T28);
						  T1H = FNMS(T13, Tj, T1z);
						  T1A = FMA(T13, Tj, T1z);
						  T1K = FMA(T13, Th, T1D);
						  T1E = FNMS(T13, Th, T1D);
						  T1W = T1t + T1u;
						  T1v = T1t - T1u;
						  T1l = Im[WS(rs, 4)];
					     }
					     T1S = Rm[0];
					     T1T = Rp[0];
					     T1p = Rp[WS(rs, 4)];
					     T1m = T1k - T1l;
					     T1Q = T1k + T1l;
					     T2q = T1T + T1S;
					     T1U = T1S - T1T;
					     T1q = Rm[WS(rs, 4)];
					}
					{
					     E T36, T1V, T1O, T1r, T1n, T1P, T34, T2r;
					     T36 = T4 * T1U;
					     T1V = T1 * T1U;
					     T1O = T1q - T1p;
					     T1r = T1p + T1q;
					     T1n = T1j * T1m;
					     T37 = FMA(T1, T1W, T36);
					     T2r = T1j * T1r;
					     T1P = Th * T1O;
					     T34 = Tj * T1O;
					     T1s = FNMS(T1o, T1r, T1n);
					     T2s = FMA(T1o, T1m, T2r);
					     T1R = FNMS(Tj, T1Q, T1P);
					     T35 = FMA(Th, T1Q, T34);
					     T1X = FNMS(T4, T1W, T1V);
					}
				   }
				   {
					E T1F, T11, T1e, T16, T1L, T1b, T1f, T1C, T2Z;
					{
					     E T14, T15, TZ, T10, T19, T1a, T1B;
					     TZ = Ip[WS(rs, 2)];
					     T10 = Im[WS(rs, 2)];
					     T38 = T35 + T37;
					     T3T = T37 - T35;
					     T1Y = T1R + T1X;
					     T3P = T1X - T1R;
					     T1F = TZ + T10;
					     T11 = TZ - T10;
					     T14 = Rp[WS(rs, 2)];
					     T15 = Rm[WS(rs, 2)];
					     T19 = Ip[WS(rs, 6)];
					     T1a = Im[WS(rs, 6)];
					     T1e = Rp[WS(rs, 6)];
					     T16 = T14 + T15;
					     T1B = T15 - T14;
					     T1L = T19 + T1a;
					     T1b = T19 - T1a;
					     T1f = Rm[WS(rs, 6)];
					     T1C = T1A * T1B;
					     T2Z = T1E * T1B;
					}
					{
					     E T1J, T31, T2u, T30, T32;
					     {
						  E T12, T1g, T1I, T1c, T2w;
						  T12 = TY * T11;
						  T1g = T1e + T1f;
						  T1I = T1f - T1e;
						  T1c = T18 * T1b;
						  T17 = FNMS(T13, T16, T12);
						  T2w = T18 * T1g;
						  T1J = T1H * T1I;
						  T31 = T1K * T1I;
						  T1h = FNMS(T1d, T1g, T1c);
						  T2x = FMA(T1d, T1b, T2w);
					     }
					     T2u = TY * T16;
					     T30 = FMA(T1A, T1F, T2Z);
					     T32 = FMA(T1H, T1L, T31);
					     T1G = FNMS(T1E, T1F, T1C);
					     T2v = FMA(T13, T11, T2u);
					     T1M = FNMS(T1K, T1L, T1J);
					     T33 = T30 + T32;
					     T3Q = T30 - T32;
					}
				   }
			      }
			      {
				   E Tl, T22, T9, T20, Tf, T2O, Ta, T21, T2A, Tm, Tr, Ts;
				   {
					E T7, T8, Td, Te;
					T7 = Ip[WS(rs, 1)];
					T3S = T1G - T1M;
					T1N = T1G + T1M;
					T8 = Im[WS(rs, 1)];
					Td = Rp[WS(rs, 1)];
					Te = Rm[WS(rs, 1)];
					Tl = Ip[WS(rs, 5)];
					T22 = T7 + T8;
					T9 = T7 - T8;
					T20 = Td - Te;
					Tf = Td + Te;
					T2O = T2 * T22;
					Ta = T6 * T9;
					T21 = T2 * T20;
					T2A = T6 * Tf;
					Tm = Im[WS(rs, 5)];
					Tr = Rp[WS(rs, 5)];
					Ts = Rm[WS(rs, 5)];
				   }
				   {
					E Tg, T2a, Tn, T26, T2Q, T27, T2C, T2B, Tu, Tt, To, T23, T2D, T2b;
					Tg = FNMS(Tc, Tf, Ta);
					T2a = Tl + Tm;
					Tn = Tl - Tm;
					T26 = Tr - Ts;
					Tt = Tr + Ts;
					T2Q = T25 * T2a;
					To = Tk * Tn;
					T27 = T25 * T26;
					T2C = Tk * Tt;
					T2B = FMA(Tc, T9, T2A);
					Tu = FNMS(Tq, Tt, To);
					T23 = FMA(T5, T22, T21);
					T2D = FMA(Tq, Tn, T2C);
					T2b = FMA(T29, T2a, T27);
					Tv = Tg + Tu;
					T3A = Tg - Tu;
					T2P = FNMS(T5, T20, T2O);
					T2E = T2B + T2D;
					T3B = T2B - T2D;
					T3L = T2b - T23;
					T2c = T23 + T2b;
					T2R = FNMS(T29, T26, T2Q);
				   }
			      }
			      {
				   E T2f, TC, T2T, TD, T2d, TI, TS, T2e, T2F, T2l, TO, TT;
				   {
					E TG, TH, TA, TB, TM, TN;
					TA = Ip[WS(rs, 7)];
					TB = Im[WS(rs, 7)];
					TG = Rp[WS(rs, 7)];
					T3I = T2R - T2P;
					T2S = T2P + T2R;
					T2f = TA + TB;
					TC = TA - TB;
					TH = Rm[WS(rs, 7)];
					TM = Ip[WS(rs, 3)];
					T2T = Tw * T2f;
					TD = Tz * TC;
					T2d = TG - TH;
					TI = TG + TH;
					TN = Im[WS(rs, 3)];
					TS = Rp[WS(rs, 3)];
					T2e = Tw * T2d;
					T2F = Tz * TI;
					T2l = TM + TN;
					TO = TM - TN;
					TT = Rm[WS(rs, 3)];
				   }
				   {
					E TJ, T2V, TP, T2i, TU, T2G;
					TJ = FNMS(TF, TI, TD);
					T2V = T2h * T2l;
					TP = TL * TO;
					T2i = TS - TT;
					TU = TS + TT;
					T2G = FMA(TF, TC, T2F);
					{
					     E T2g, T2j, TV, T2H;
					     T2g = FMA(Ty, T2f, T2e);
					     T2j = T2h * T2i;
					     TV = FNMS(TR, TU, TP);
					     T2H = TL * TU;
					     {
						  E T2U, T2m, T2I, T2W;
						  T2U = FNMS(Ty, T2d, T2T);
						  T2m = FMA(T2k, T2l, T2j);
						  TW = TJ + TV;
						  T3E = TJ - TV;
						  T2I = FMA(TR, TO, T2H);
						  T2W = FNMS(T2k, T2i, T2V);
						  T3J = T2m - T2g;
						  T2n = T2g + T2m;
						  T3D = T2G - T2I;
						  T2J = T2G + T2I;
						  T3M = T2U - T2W;
						  T2X = T2U + T2W;
					     }
					}
				   }
			      }
			 }
			 {
			      E T3Y, T3x, T3X, T3y, T3r, T3q, T3p, T3u;
			      {
				   E T2Y, T3o, TX, T3s, T3i, T39, T3t, T3l, T3e, T1x, T2M, T2p, T3d, T2K, T2t;
				   E T2y;
				   {
					E T2o, T1Z, T3j, T3k, T1i, T1w, T3g, T3h;
					T2Y = T2S + T2X;
					T3g = T2X - T2S;
					T3h = T2c - T2n;
					T2o = T2c + T2n;
					T1Z = T1N + T1Y;
					T3j = T1Y - T1N;
					T3o = Tv - TW;
					TX = Tv + TW;
					T3s = T3g - T3h;
					T3i = T3g + T3h;
					T3k = T38 - T33;
					T39 = T33 + T38;
					T3Y = T17 - T1h;
					T1i = T17 + T1h;
					T1w = T1s + T1v;
					T3x = T1v - T1s;
					T3t = T3j + T3k;
					T3l = T3j - T3k;
					T3e = T1w - T1i;
					T1x = T1i + T1w;
					T2M = T2o + T1Z;
					T2p = T1Z - T2o;
					T3d = T2J - T2E;
					T2K = T2E + T2J;
					T3X = T2q - T2s;
					T2t = T2q + T2s;
					T2y = T2v + T2x;
					T3y = T2v - T2x;
				   }
				   {
					E T2N, T3c, T3a, T3n, T3b, T2L, T2z, T1y;
					T2N = T1x - TX;
					T1y = TX + T1x;
					T3c = T2Y + T39;
					T3a = T2Y - T39;
					T3n = T2t - T2y;
					T2z = T2t + T2y;
					Ip[0] = KP500000000 * (T1y + T2p);
					Im[WS(rs, 7)] = KP500000000 * (T2p - T1y);
					T3b = T2z + T2K;
					T2L = T2z - T2K;
					{
					     E T3f, T3m, T3v, T3w;
					     T3r = T3e - T3d;
					     T3f = T3d + T3e;
					     Im[WS(rs, 3)] = KP500000000 * (T3a - T2N);
					     Ip[WS(rs, 4)] = KP500000000 * (T2N + T3a);
					     Rp[WS(rs, 4)] = KP500000000 * (T2L + T2M);
					     Rm[WS(rs, 3)] = KP500000000 * (T2L - T2M);
					     Rp[0] = KP500000000 * (T3b + T3c);
					     Rm[WS(rs, 7)] = KP500000000 * (T3b - T3c);
					     T3m = T3i + T3l;
					     T3q = T3l - T3i;
					     T3p = T3n - T3o;
					     T3v = T3n + T3o;
					     T3w = T3s + T3t;
					     T3u = T3s - T3t;
					     Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP707106781, T3m, T3f)));
					     Ip[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3m, T3f));
					     Rp[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3w, T3v));
					     Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP707106781, T3w, T3v));
					}
				   }
			      }
			      {
				   E T3R, T4b, T3z, T4q, T4g, T3U, T40, T41, T4r, T4j, T4m, T3G, T46, T3O, T4l;
				   E T3Z, T4c;
				   {
					E T3K, T3N, T4h, T4i, T3C, T3F, T4e, T4f;
					Rp[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3q, T3p));
					Rm[WS(rs, 1)] = KP500000000 * (FNMS(KP707106781, T3q, T3p));
					Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP707106781, T3u, T3r)));
					Ip[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3u, T3r));
					T3K = T3I + T3J;
					T4e = T3I - T3J;
					T4f = T3M - T3L;
					T3N = T3L + T3M;
					T3R = T3P - T3Q;
					T4h = T3Q + T3P;
					T4b = T3y + T3x;
					T3z = T3x - T3y;
					T4q = FNMS(KP414213562, T4e, T4f);
					T4g = FMA(KP414213562, T4f, T4e);
					T4i = T3T - T3S;
					T3U = T3S + T3T;
					T40 = T3B + T3A;
					T3C = T3A - T3B;
					T3F = T3D + T3E;
					T41 = T3D - T3E;
					T4r = FNMS(KP414213562, T4h, T4i);
					T4j = FMA(KP414213562, T4i, T4h);
					T4m = T3C - T3F;
					T3G = T3C + T3F;
					T46 = FNMS(KP414213562, T3K, T3N);
					T3O = FMA(KP414213562, T3N, T3K);
					T4l = T3X - T3Y;
					T3Z = T3X + T3Y;
				   }
				   {
					E T45, T3H, T42, T47, T3V;
					T45 = FNMS(KP707106781, T3G, T3z);
					T3H = FMA(KP707106781, T3G, T3z);
					T4c = T41 - T40;
					T42 = T40 + T41;
					T47 = FMA(KP414213562, T3R, T3U);
					T3V = FNMS(KP414213562, T3U, T3R);
					{
					     E T49, T43, T48, T4a, T44, T3W;
					     T49 = FMA(KP707106781, T42, T3Z);
					     T43 = FNMS(KP707106781, T42, T3Z);
					     T48 = T46 - T47;
					     T4a = T46 + T47;
					     T44 = T3V - T3O;
					     T3W = T3O + T3V;
					     Rp[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T4a, T49));
					     Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP923879532, T4a, T49));
					     Rp[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T44, T43));
					     Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP923879532, T44, T43));
					     Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP923879532, T3W, T3H)));
					     Ip[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3W, T3H));
					     Ip[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T48, T45));
					     Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP923879532, T48, T45)));
					}
				   }
				   {
					E T4d, T4k, T4t, T4u;
					T4p = FMA(KP707106781, T4c, T4b);
					T4d = FNMS(KP707106781, T4c, T4b);
					T4k = T4g - T4j;
					T4o = T4g + T4j;
					T4n = FMA(KP707106781, T4m, T4l);
					T4t = FNMS(KP707106781, T4m, T4l);
					T4u = T4q + T4r;
					T4s = T4q - T4r;
					Im[0] = -(KP500000000 * (FNMS(KP923879532, T4k, T4d)));
					Ip[WS(rs, 7)] = KP500000000 * (FMA(KP923879532, T4k, T4d));
					Rm[0] = KP500000000 * (FMA(KP923879532, T4u, T4t));
					Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP923879532, T4u, T4t));
				   }
			      }
			 }
		    }
	       }
	       Rp[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4o, T4n));
	       Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP923879532, T4o, T4n));
	       Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP923879532, T4s, T4p)));
	       Ip[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4s, T4p));
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_CEXP, 1, 1},
     {TW_CEXP, 1, 3},
     {TW_CEXP, 1, 9},
     {TW_CEXP, 1, 15},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, {136, 74, 92, 0} };

void X(codelet_hc2cfdft2_16) (planner *p) {
     X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include hc2cf.h */

/*
 * This function contains 228 FP additions, 124 FP multiplications,
 * (or, 188 additions, 84 multiplications, 40 fused multiply/add),
 * 91 stack variables, 4 constants, and 64 memory accesses
 */
#include "hc2cf.h"

static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP461939766, +0.461939766255643378064091594698394143411208313);
     DK(KP191341716, +0.191341716182544885864229992015199433380672281);
     DK(KP353553390, +0.353553390593273762200422181052424519642417969);
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
     {
	  INT m;
	  for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) {
	       E T1, T4, T2, T5, T7, Td, T12, TY, Tk, Ti, Tm, T1l, T1b, TL, T1h;
	       E Ts, TR, T17, Ty, Tz, TA, TE, T1L, T1Q, T1H, T1O, T24, T2d, T20, T2b;
	       {
		    E Tl, TP, Tq, TK, Tj, TQ, Tr, TJ;
		    {
			 E T3, Tc, T6, Tb;
			 T1 = W[0];
			 T4 = W[1];
			 T2 = W[2];
			 T5 = W[3];
			 T3 = T1 * T2;
			 Tc = T4 * T2;
			 T6 = T4 * T5;
			 Tb = T1 * T5;
			 T7 = T3 + T6;
			 Td = Tb - Tc;
			 T12 = Tb + Tc;
			 TY = T3 - T6;
			 Tk = W[5];
			 Tl = T4 * Tk;
			 TP = T2 * Tk;
			 Tq = T1 * Tk;
			 TK = T5 * Tk;
			 Ti = W[4];
			 Tj = T1 * Ti;
			 TQ = T5 * Ti;
			 Tr = T4 * Ti;
			 TJ = T2 * Ti;
		    }
		    Tm = Tj - Tl;
		    T1l = Tq - Tr;
		    T1b = TP + TQ;
		    TL = TJ + TK;
		    T1h = Tj + Tl;
		    Ts = Tq + Tr;
		    TR = TP - TQ;
		    T17 = TJ - TK;
		    Ty = W[6];
		    Tz = W[7];
		    TA = FMA(T1, Ty, T4 * Tz);
		    TE = FNMS(T4, Ty, T1 * Tz);
		    {
			 E T1J, T1K, T1F, T1G;
			 T1J = TY * Tk;
			 T1K = T12 * Ti;
			 T1L = T1J - T1K;
			 T1Q = T1J + T1K;
			 T1F = TY * Ti;
			 T1G = T12 * Tk;
			 T1H = T1F + T1G;
			 T1O = T1F - T1G;
		    }
		    {
			 E T22, T23, T1Y, T1Z;
			 T22 = T7 * Tk;
			 T23 = Td * Ti;
			 T24 = T22 + T23;
			 T2d = T22 - T23;
			 T1Y = T7 * Ti;
			 T1Z = Td * Tk;
			 T20 = T1Y - T1Z;
			 T2b = T1Y + T1Z;
		    }
	       }
	       {
		    E T1t, T3i, T2l, T3B, T1E, T3t, T2M, T3x, T1g, T3C, T2J, T3u, T1T, T3w, T2o;
		    E T3j, Tx, T3b, T2C, T3q, T27, T3m, T2s, T3c, TW, T3f, T2F, T3n, T2g, T3p;
		    E T2v, T3e;
		    {
			 E T1k, T1C, T1o, T1B, T1s, T1z, T1y, T2j, T1p, T2k;
			 {
			      E T1i, T1j, T1m, T1n;
			      T1i = Ip[WS(rs, 4)];
			      T1j = Im[WS(rs, 4)];
			      T1k = T1i - T1j;
			      T1C = T1i + T1j;
			      T1m = Rp[WS(rs, 4)];
			      T1n = Rm[WS(rs, 4)];
			      T1o = T1m + T1n;
			      T1B = T1m - T1n;
			 }
			 {
			      E T1q, T1r, T1w, T1x;
			      T1q = Ip[0];
			      T1r = Im[0];
			      T1s = T1q - T1r;
			      T1z = T1q + T1r;
			      T1w = Rm[0];
			      T1x = Rp[0];
			      T1y = T1w - T1x;
			      T2j = T1x + T1w;
			 }
			 T1p = FNMS(T1l, T1o, T1h * T1k);
			 T1t = T1p + T1s;
			 T3i = T1s - T1p;
			 T2k = FMA(T1h, T1o, T1l * T1k);
			 T2l = T2j + T2k;
			 T3B = T2j - T2k;
			 {
			      E T1A, T1D, T2K, T2L;
			      T1A = FNMS(T4, T1z, T1 * T1y);
			      T1D = FMA(Ti, T1B, Tk * T1C);
			      T1E = T1A - T1D;
			      T3t = T1D + T1A;
			      T2K = FNMS(Tk, T1B, Ti * T1C);
			      T2L = FMA(T4, T1y, T1 * T1z);
			      T2M = T2K + T2L;
			      T3x = T2L - T2K;
			 }
		    }
		    {
			 E T11, T1M, T15, T1I, T1a, T1R, T1e, T1P;
			 {
			      E TZ, T10, T13, T14;
			      TZ = Ip[WS(rs, 2)];
			      T10 = Im[WS(rs, 2)];
			      T11 = TZ - T10;
			      T1M = TZ + T10;
			      T13 = Rp[WS(rs, 2)];
			      T14 = Rm[WS(rs, 2)];
			      T15 = T13 + T14;
			      T1I = T13 - T14;
			 }
			 {
			      E T18, T19, T1c, T1d;
			      T18 = Ip[WS(rs, 6)];
			      T19 = Im[WS(rs, 6)];
			      T1a = T18 - T19;
			      T1R = T18 + T19;
			      T1c = Rp[WS(rs, 6)];
			      T1d = Rm[WS(rs, 6)];
			      T1e = T1c + T1d;
			      T1P = T1c - T1d;
			 }
			 {
			      E T16, T1f, T2H, T2I;
			      T16 = FNMS(T12, T15, TY * T11);
			      T1f = FNMS(T1b, T1e, T17 * T1a);
			      T1g = T16 + T1f;
			      T3C = T16 - T1f;
			      T2H = FNMS(T1L, T1I, T1H * T1M);
			      T2I = FNMS(T1Q, T1P, T1O * T1R);
			      T2J = T2H + T2I;
			      T3u = T2H - T2I;
			 }
			 {
			      E T1N, T1S, T2m, T2n;
			      T1N = FMA(T1H, T1I, T1L * T1M);
			      T1S = FMA(T1O, T1P, T1Q * T1R);
			      T1T = T1N + T1S;
			      T3w = T1S - T1N;
			      T2m = FMA(TY, T15, T12 * T11);
			      T2n = FMA(T17, T1e, T1b * T1a);
			      T2o = T2m + T2n;
			      T3j = T2m - T2n;
			 }
		    }
		    {
			 E Ta, T1W, Tg, T1V, Tp, T25, Tv, T21;
			 {
			      E T8, T9, Te, Tf;
			      T8 = Ip[WS(rs, 1)];
			      T9 = Im[WS(rs, 1)];
			      Ta = T8 - T9;
			      T1W = T8 + T9;
			      Te = Rp[WS(rs, 1)];
			      Tf = Rm[WS(rs, 1)];
			      Tg = Te + Tf;
			      T1V = Te - Tf;
			 }
			 {
			      E Tn, To, Tt, Tu;
			      Tn = Ip[WS(rs, 5)];
			      To = Im[WS(rs, 5)];
			      Tp = Tn - To;
			      T25 = Tn + To;
			      Tt = Rp[WS(rs, 5)];
			      Tu = Rm[WS(rs, 5)];
			      Tv = Tt + Tu;
			      T21 = Tt - Tu;
			 }
			 {
			      E Th, Tw, T2A, T2B;
			      Th = FNMS(Td, Tg, T7 * Ta);
			      Tw = FNMS(Ts, Tv, Tm * Tp);
			      Tx = Th + Tw;
			      T3b = Th - Tw;
			      T2A = FNMS(T5, T1V, T2 * T1W);
			      T2B = FNMS(T24, T21, T20 * T25);
			      T2C = T2A + T2B;
			      T3q = T2A - T2B;
			 }
			 {
			      E T1X, T26, T2q, T2r;
			      T1X = FMA(T2, T1V, T5 * T1W);
			      T26 = FMA(T20, T21, T24 * T25);
			      T27 = T1X + T26;
			      T3m = T26 - T1X;
			      T2q = FMA(T7, Tg, Td * Ta);
			      T2r = FMA(Tm, Tv, Ts * Tp);
			      T2s = T2q + T2r;
			      T3c = T2q - T2r;
			 }
		    }
		    {
			 E TD, T29, TH, T28, TO, T2e, TU, T2c;
			 {
			      E TB, TC, TF, TG;
			      TB = Ip[WS(rs, 7)];
			      TC = Im[WS(rs, 7)];
			      TD = TB - TC;
			      T29 = TB + TC;
			      TF = Rp[WS(rs, 7)];
			      TG = Rm[WS(rs, 7)];
			      TH = TF + TG;
			      T28 = TF - TG;
			 }
			 {
			      E TM, TN, TS, TT;
			      TM = Ip[WS(rs, 3)];
			      TN = Im[WS(rs, 3)];
			      TO = TM - TN;
			      T2e = TM + TN;
			      TS = Rp[WS(rs, 3)];
			      TT = Rm[WS(rs, 3)];
			      TU = TS + TT;
			      T2c = TS - TT;
			 }
			 {
			      E TI, TV, T2D, T2E;
			      TI = FNMS(TE, TH, TA * TD);
			      TV = FNMS(TR, TU, TL * TO);
			      TW = TI + TV;
			      T3f = TI - TV;
			      T2D = FNMS(Tz, T28, Ty * T29);
			      T2E = FNMS(T2d, T2c, T2b * T2e);
			      T2F = T2D + T2E;
			      T3n = T2D - T2E;
			 }
			 {
			      E T2a, T2f, T2t, T2u;
			      T2a = FMA(Ty, T28, Tz * T29);
			      T2f = FMA(T2b, T2c, T2d * T2e);
			      T2g = T2a + T2f;
			      T3p = T2f - T2a;
			      T2t = FMA(TA, TH, TE * TD);
			      T2u = FMA(TL, TU, TR * TO);
			      T2v = T2t + T2u;
			      T3e = T2t - T2u;
			 }
		    }
		    {
			 E T1v, T2z, T2O, T2Q, T2i, T2y, T2x, T2P;
			 {
			      E TX, T1u, T2G, T2N;
			      TX = Tx + TW;
			      T1u = T1g + T1t;
			      T1v = TX + T1u;
			      T2z = T1u - TX;
			      T2G = T2C + T2F;
			      T2N = T2J + T2M;
			      T2O = T2G - T2N;
			      T2Q = T2G + T2N;
			 }
			 {
			      E T1U, T2h, T2p, T2w;
			      T1U = T1E - T1T;
			      T2h = T27 + T2g;
			      T2i = T1U - T2h;
			      T2y = T2h + T1U;
			      T2p = T2l + T2o;
			      T2w = T2s + T2v;
			      T2x = T2p - T2w;
			      T2P = T2p + T2w;
			 }
			 Ip[0] = KP500000000 * (T1v + T2i);
			 Rp[0] = KP500000000 * (T2P + T2Q);
			 Im[WS(rs, 7)] = KP500000000 * (T2i - T1v);
			 Rm[WS(rs, 7)] = KP500000000 * (T2P - T2Q);
			 Rm[WS(rs, 3)] = KP500000000 * (T2x - T2y);
			 Im[WS(rs, 3)] = KP500000000 * (T2O - T2z);
			 Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y);
			 Ip[WS(rs, 4)] = KP500000000 * (T2z + T2O);
		    }
		    {
			 E T2T, T35, T33, T39, T2W, T36, T2Z, T37;
			 {
			      E T2R, T2S, T31, T32;
			      T2R = T2v - T2s;
			      T2S = T1t - T1g;
			      T2T = KP500000000 * (T2R + T2S);
			      T35 = KP500000000 * (T2S - T2R);
			      T31 = T2l - T2o;
			      T32 = Tx - TW;
			      T33 = KP500000000 * (T31 - T32);
			      T39 = KP500000000 * (T31 + T32);
			 }
			 {
			      E T2U, T2V, T2X, T2Y;
			      T2U = T2F - T2C;
			      T2V = T27 - T2g;
			      T2W = T2U + T2V;
			      T36 = T2U - T2V;
			      T2X = T1T + T1E;
			      T2Y = T2M - T2J;
			      T2Z = T2X - T2Y;
			      T37 = T2X + T2Y;
			 }
			 {
			      E T30, T3a, T34, T38;
			      T30 = KP353553390 * (T2W + T2Z);
			      Ip[WS(rs, 2)] = T2T + T30;
			      Im[WS(rs, 5)] = T30 - T2T;
			      T3a = KP353553390 * (T36 + T37);
			      Rm[WS(rs, 5)] = T39 - T3a;
			      Rp[WS(rs, 2)] = T39 + T3a;
			      T34 = KP353553390 * (T2Z - T2W);
			      Rm[WS(rs, 1)] = T33 - T34;
			      Rp[WS(rs, 6)] = T33 + T34;
			      T38 = KP353553390 * (T36 - T37);
			      Ip[WS(rs, 6)] = T35 + T38;
			      Im[WS(rs, 1)] = T38 - T35;
			 }
		    }
		    {
			 E T3k, T3Q, T3Z, T3D, T3h, T40, T3X, T45, T3G, T3P, T3s, T3K, T3U, T44, T3z;
			 E T3L;
			 {
			      E T3d, T3g, T3o, T3r;
			      T3k = KP500000000 * (T3i - T3j);
			      T3Q = KP500000000 * (T3j + T3i);
			      T3Z = KP500000000 * (T3B - T3C);
			      T3D = KP500000000 * (T3B + T3C);
			      T3d = T3b - T3c;
			      T3g = T3e + T3f;
			      T3h = KP353553390 * (T3d + T3g);
			      T40 = KP353553390 * (T3d - T3g);
			      {
				   E T3V, T3W, T3E, T3F;
				   T3V = T3u + T3t;
				   T3W = T3x - T3w;
				   T3X = FNMS(KP461939766, T3W, KP191341716 * T3V);
				   T45 = FMA(KP461939766, T3V, KP191341716 * T3W);
				   T3E = T3c + T3b;
				   T3F = T3e - T3f;
				   T3G = KP353553390 * (T3E + T3F);
				   T3P = KP353553390 * (T3F - T3E);
			      }
			      T3o = T3m + T3n;
			      T3r = T3p - T3q;
			      T3s = FMA(KP191341716, T3o, KP461939766 * T3r);
			      T3K = FNMS(KP191341716, T3r, KP461939766 * T3o);
			      {
				   E T3S, T3T, T3v, T3y;
				   T3S = T3n - T3m;
				   T3T = T3q + T3p;
				   T3U = FMA(KP461939766, T3S, KP191341716 * T3T);
				   T44 = FNMS(KP461939766, T3T, KP191341716 * T3S);
				   T3v = T3t - T3u;
				   T3y = T3w + T3x;
				   T3z = FNMS(KP191341716, T3y, KP461939766 * T3v);
				   T3L = FMA(KP191341716, T3v, KP461939766 * T3y);
			      }
			 }
			 {
			      E T3l, T3A, T3N, T3O;
			      T3l = T3h + T3k;
			      T3A = T3s + T3z;
			      Ip[WS(rs, 1)] = T3l + T3A;
			      Im[WS(rs, 6)] = T3A - T3l;
			      T3N = T3D + T3G;
			      T3O = T3K + T3L;
			      Rm[WS(rs, 6)] = T3N - T3O;
			      Rp[WS(rs, 1)] = T3N + T3O;
			 }
			 {
			      E T3H, T3I, T3J, T3M;
			      T3H = T3D - T3G;
			      T3I = T3z - T3s;
			      Rm[WS(rs, 2)] = T3H - T3I;
			      Rp[WS(rs, 5)] = T3H + T3I;
			      T3J = T3k - T3h;
			      T3M = T3K - T3L;
			      Ip[WS(rs, 5)] = T3J + T3M;
			      Im[WS(rs, 2)] = T3M - T3J;
			 }
			 {
			      E T3R, T3Y, T47, T48;
			      T3R = T3P + T3Q;
			      T3Y = T3U + T3X;
			      Ip[WS(rs, 3)] = T3R + T3Y;
			      Im[WS(rs, 4)] = T3Y - T3R;
			      T47 = T3Z + T40;
			      T48 = T44 + T45;
			      Rm[WS(rs, 4)] = T47 - T48;
			      Rp[WS(rs, 3)] = T47 + T48;
			 }
			 {
			      E T41, T42, T43, T46;
			      T41 = T3Z - T40;
			      T42 = T3X - T3U;
			      Rm[0] = T41 - T42;
			      Rp[WS(rs, 7)] = T41 + T42;
			      T43 = T3Q - T3P;
			      T46 = T44 - T45;
			      Ip[WS(rs, 7)] = T43 + T46;
			      Im[0] = T46 - T43;
			 }
		    }
	       }
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_CEXP, 1, 1},
     {TW_CEXP, 1, 3},
     {TW_CEXP, 1, 9},
     {TW_CEXP, 1, 15},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, {188, 84, 40, 0} };

void X(codelet_hc2cfdft2_16) (planner *p) {
     X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT);
}
#endif				/* HAVE_FMA */