view src/fftw-3.3.3/mpi/rdft2-rank-geq2-transposed.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-11 Matteo Frigo
 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* Real-input (r2c) DFTs of rank >= 2, for the case where we are distributed
   across the first dimension only, and the output is transposed both
   in data distribution and in ordering (for the first 2 dimensions).

   Conversely, real-output (c2r) DFTs where the input is transposed.

   We don't currently support transposed-input r2c or transposed-output
   c2r transforms. */

#include "mpi-rdft2.h"
#include "mpi-transpose.h"
#include "rdft.h"
#include "dft.h"

typedef struct {
     solver super;
     int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
} S;

typedef struct {
     plan_mpi_rdft2 super;

     plan *cld1, *cldt, *cld2;
     INT vn;
     int preserve_input;
} P;

static void apply_r2c(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     plan_rdft2 *cld1;
     plan_dft *cld2;
     plan_rdft *cldt;
     
     /* RDFT2 local dimensions */
     cld1 = (plan_rdft2 *) ego->cld1;
     if (ego->preserve_input) {
	  cld1->apply(ego->cld1, I, I+ego->vn, O, O+1);
	  I = O;
     }
     else
	  cld1->apply(ego->cld1, I, I+ego->vn, I, I+1);

     /* global transpose */
     cldt = (plan_rdft *) ego->cldt;
     cldt->apply(ego->cldt, I, O);

     /* DFT final local dimension */
     cld2 = (plan_dft *) ego->cld2;
     cld2->apply(ego->cld2, O, O+1, O, O+1);
}

static void apply_c2r(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     plan_rdft2 *cld1;
     plan_dft *cld2;
     plan_rdft *cldt;
     
     /* IDFT local dimensions */
     cld2 = (plan_dft *) ego->cld2;
     if (ego->preserve_input) {
	  cld2->apply(ego->cld2, I+1, I, O+1, O);
	  I = O;
     }
     else
	  cld2->apply(ego->cld2, I+1, I, I+1, I);

     /* global transpose */
     cldt = (plan_rdft *) ego->cldt;
     cldt->apply(ego->cldt, I, O);

     /* RDFT2 final local dimension */
     cld1 = (plan_rdft2 *) ego->cld1;
     cld1->apply(ego->cld1, O, O+ego->vn, O, O+1);
}

static int applicable(const S *ego, const problem *p_,
		      const planner *plnr)
{
     const problem_mpi_rdft2 *p = (const problem_mpi_rdft2 *) p_;
     return (1
	     && p->sz->rnk > 1
	     && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
					  && p->I != p->O))
	     && ((p->flags == TRANSPOSED_OUT && p->kind == R2HC
		  && XM(is_local_after)(1, p->sz, IB)
		  && XM(is_local_after)(2, p->sz, OB)
		  && XM(num_blocks)(p->sz->dims[0].n, 
				    p->sz->dims[0].b[OB]) == 1)
		 || 
		 (p->flags == TRANSPOSED_IN && p->kind == HC2R
		  && XM(is_local_after)(1, p->sz, OB)
		  && XM(is_local_after)(2, p->sz, IB)
		  && XM(num_blocks)(p->sz->dims[0].n, 
				    p->sz->dims[0].b[IB]) == 1))
	     && (!NO_SLOWP(plnr) /* slow if rdft2-serial is applicable */
		 || !XM(rdft2_serial_applicable)(p))
	  );
}

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     X(plan_awake)(ego->cld1, wakefulness);
     X(plan_awake)(ego->cldt, wakefulness);
     X(plan_awake)(ego->cld2, wakefulness);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(plan_destroy_internal)(ego->cld2);
     X(plan_destroy_internal)(ego->cldt);
     X(plan_destroy_internal)(ego->cld1);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     p->print(p, "(mpi-rdft2-rank-geq2-transposed%s%(%p%)%(%p%)%(%p%))", 
	      ego->preserve_input==2 ?"/p":"",
	      ego->cld1, ego->cldt, ego->cld2);
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const S *ego = (const S *) ego_;
     const problem_mpi_rdft2 *p;
     P *pln;
     plan *cld1 = 0, *cldt = 0, *cld2 = 0;
     R *r0, *r1, *cr, *ci, *ri, *ii, *ro, *io, *I, *O;
     tensor *sz;
     int i, my_pe, n_pes;
     INT nrest, n1, b1;
     static const plan_adt padt = {
          XM(rdft2_solve), awake, print, destroy
     };
     block_kind k1, k2;

     UNUSED(ego);

     if (!applicable(ego, p_, plnr))
          return (plan *) 0;

     p = (const problem_mpi_rdft2 *) p_;

     I = p->I; O = p->O;
     if (p->kind == R2HC) {
	  k1 = IB; k2 = OB;
          r1 = (r0 = I) + p->vn;
	  if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
	       ci = (cr = O) + 1;
	       I = O; 
	  }
	  else 
	       ci = (cr = I) + 1;
	  io = ii = (ro = ri = O) + 1;
     }
     else {
	  k1 = OB; k2 = IB;
	  r1 = (r0 = O) + p->vn;
	  ci = (cr = O) + 1;
	  if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
	       ri = (ii = I) + 1;
	       ro = (io = O) + 1;
	       I = O;
	  }
	  else
	       ro = ri = (io = ii = I) + 1;
     }

     MPI_Comm_rank(p->comm, &my_pe);
     MPI_Comm_size(p->comm, &n_pes);

     sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
     i = p->sz->rnk - 2; A(i >= 0);
     sz->dims[i].n = p->sz->dims[i+1].n / 2 + 1;
     sz->dims[i].is = sz->dims[i].os = 2 * p->vn;
     for (--i; i >= 0; --i) {
	  sz->dims[i].n = p->sz->dims[i+1].n;
	  sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
     }
     nrest = 1; for (i = 1; i < sz->rnk; ++i) nrest *= sz->dims[i].n;
     {
	  INT ivs = 1 + (p->kind == HC2R), ovs = 1 + (p->kind == R2HC);
          INT is = sz->dims[0].n * sz->dims[0].is;
          INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[k1], my_pe);
	  sz->dims[p->sz->rnk - 2].n = p->sz->dims[p->sz->rnk - 1].n;
	  cld1 = X(mkplan_d)(plnr,
                             X(mkproblem_rdft2_d)(sz,
						  X(mktensor_2d)(b, is, is,
								p->vn,ivs,ovs),
						  r0, r1, cr, ci, p->kind));
	  if (XM(any_true)(!cld1, p->comm)) goto nada;
     }

     nrest *= p->vn;
     n1 = p->sz->dims[1].n;
     b1 = p->sz->dims[1].b[k2];
     if (p->sz->rnk == 2) { /* n1 dimension is cut in ~half */
	  n1 = n1 / 2 + 1;
	  b1 = b1 == p->sz->dims[1].n ? n1 : b1;
     }

     if (p->kind == R2HC)
	  cldt = X(mkplan_d)(plnr,
			     XM(mkproblem_transpose)(
				  p->sz->dims[0].n, n1, nrest * 2,
				  I, O,
				  p->sz->dims[0].b[IB], b1,
				  p->comm, 0));
     else
	  cldt = X(mkplan_d)(plnr,
			     XM(mkproblem_transpose)(
				  n1, p->sz->dims[0].n, nrest * 2,
				  I, O,
				  b1, p->sz->dims[0].b[OB], 
				  p->comm, 0));
     if (XM(any_true)(!cldt, p->comm)) goto nada;

     {
	  INT is = p->sz->dims[0].n * nrest * 2;
	  INT b = XM(block)(n1, b1, my_pe);
	  cld2 = X(mkplan_d)(plnr,
			     X(mkproblem_dft_d)(X(mktensor_1d)(
						     p->sz->dims[0].n,
						     nrest * 2, nrest * 2),
						X(mktensor_2d)(b, is, is,
							       nrest, 2, 2),
						ri, ii, ro, io));
	  if (XM(any_true)(!cld2, p->comm)) goto nada;
     }

     pln = MKPLAN_MPI_RDFT2(P, &padt, p->kind == R2HC ? apply_r2c : apply_c2r);
     pln->cld1 = cld1;
     pln->cldt = cldt;
     pln->cld2 = cld2;
     pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
     pln->vn = p->vn;

     X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
     X(ops_add2)(&cldt->ops, &pln->super.super.ops);

     return &(pln->super.super);

 nada:
     X(plan_destroy_internal)(cld2);
     X(plan_destroy_internal)(cldt);
     X(plan_destroy_internal)(cld1);
     return (plan *) 0;
}

static solver *mksolver(int preserve_input)
{
     static const solver_adt sadt = { PROBLEM_MPI_RDFT2, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     slv->preserve_input = preserve_input;
     return &(slv->super);
}

void XM(rdft2_rank_geq2_transposed_register)(planner *p)
{
     int preserve_input;
     for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
	  REGISTER_SOLVER(p, mksolver(preserve_input));
}