view src/fftw-3.3.3/dft/scalar/codelets/t1_64.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-11 Matteo Frigo
 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Sun Nov 25 07:35:52 EST 2012 */

#include "codelet-dft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include t.h */

/*
 * This function contains 1038 FP additions, 644 FP multiplications,
 * (or, 520 additions, 126 multiplications, 518 fused multiply/add),
 * 228 stack variables, 15 constants, and 256 memory accesses
 */
#include "t.h"

static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP995184726, +0.995184726672196886244836953109479921575474869);
     DK(KP773010453, +0.773010453362736960810906609758469800971041293);
     DK(KP956940335, +0.956940335732208864935797886980269969482849206);
     DK(KP881921264, +0.881921264348355029712756863660388349508442621);
     DK(KP820678790, +0.820678790828660330972281985331011598767386482);
     DK(KP098491403, +0.098491403357164253077197521291327432293052451);
     DK(KP534511135, +0.534511135950791641089685961295362908582039528);
     DK(KP303346683, +0.303346683607342391675883946941299872384187453);
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
     DK(KP668178637, +0.668178637919298919997757686523080761552472251);
     DK(KP198912367, +0.198912367379658006911597622644676228597850501);
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
     {
	  INT m;
	  for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
	       E TeI, Tkk, Tkj, TeL;
	       {
		    E TiV, Tjm, T7e, TcA, TjR, Tkl, Tm, TeM, TeZ, Ths, T7Q, TcJ, T1G, TeW, TcI;
		    E T7X, Tf5, Thv, T87, TcN, T29, Tf8, TcQ, T8u, TfU, ThS, Taq, Tdm, T5K, Tg9;
		    E Tdx, Tbj, TcB, T7l, TiP, TeP, Tjl, TN, TcC, T7s, T7I, TcF, TeU, Thr, T7B;
		    E TcG, T1f, TeR, Tfg, ThB, T8G, TcU, T32, Tfj, TcX, T93, Tft, ThH, T9h, Td3;
		    E T3X, TfI, Tde, Taa, Thw, Tfb, Tf6, T2A, T8x, TcO, T8m, TcR, Tfm, ThC, T3t;
		    E Tfh, T96, TcV, T8V, TcY, ThI, TfL, Tfu, T4o, Tad, Td4, T9w, Tdf, Tgc, ThT;
		    E T6b, TfV, Tbm, Tdn, TaF, Tdy, ThN, T4Q, TfN, TfA, Taf, Ta1, Td8, Tdh, ThO;
		    E T5h, TfO, TfF, Tag, T9M, Tdb, Tdi, ThY, T6D, Tge, Tg1, Tbo, Tba, Tdr, TdA;
		    E TaN, Tdt, Tg5, ThZ, Tg2, T74, Tds, TaU;
		    {
			 E T7a, Te, T78, T8, TjP, TiU, T7c, Tk;
			 {
			      E T1, TiT, TiS, T7, Tg, Tj, Tf, Ti, T7b, Th;
			      T1 = ri[0];
			      TiT = ii[0];
			      {
				   E T3, T6, T2, T5;
				   T3 = ri[WS(rs, 32)];
				   T6 = ii[WS(rs, 32)];
				   T2 = W[62];
				   T5 = W[63];
				   {
					E Ta, Td, Tc, T79, Tb, TiR, T4, T9;
					Ta = ri[WS(rs, 16)];
					Td = ii[WS(rs, 16)];
					TiR = T2 * T6;
					T4 = T2 * T3;
					T9 = W[30];
					Tc = W[31];
					TiS = FNMS(T5, T3, TiR);
					T7 = FMA(T5, T6, T4);
					T79 = T9 * Td;
					Tb = T9 * Ta;
					Tg = ri[WS(rs, 48)];
					Tj = ii[WS(rs, 48)];
					T7a = FNMS(Tc, Ta, T79);
					Te = FMA(Tc, Td, Tb);
					Tf = W[94];
					Ti = W[95];
				   }
			      }
			      T78 = T1 - T7;
			      T8 = T1 + T7;
			      TjP = TiT - TiS;
			      TiU = TiS + TiT;
			      T7b = Tf * Tj;
			      Th = Tf * Tg;
			      T7c = FNMS(Ti, Tg, T7b);
			      Tk = FMA(Ti, Tj, Th);
			 }
			 {
			      E T7L, T1l, T7V, T1E, T1u, T1x, T1w, T7N, T1r, T7S, T1v;
			      {
				   E T1A, T1D, T1C, T7U, T1B;
				   {
					E T1h, T1k, T1g, T1j, T7K, T1i, T1z;
					T1h = ri[WS(rs, 60)];
					T1k = ii[WS(rs, 60)];
					{
					     E T7d, TiQ, Tl, TjQ;
					     T7d = T7a - T7c;
					     TiQ = T7a + T7c;
					     Tl = Te + Tk;
					     TjQ = Te - Tk;
					     TiV = TiQ + TiU;
					     Tjm = TiU - TiQ;
					     T7e = T78 - T7d;
					     TcA = T78 + T7d;
					     TjR = TjP - TjQ;
					     Tkl = TjQ + TjP;
					     Tm = T8 + Tl;
					     TeM = T8 - Tl;
					     T1g = W[118];
					}
					T1j = W[119];
					T1A = ri[WS(rs, 44)];
					T1D = ii[WS(rs, 44)];
					T7K = T1g * T1k;
					T1i = T1g * T1h;
					T1z = W[86];
					T1C = W[87];
					T7L = FNMS(T1j, T1h, T7K);
					T1l = FMA(T1j, T1k, T1i);
					T7U = T1z * T1D;
					T1B = T1z * T1A;
				   }
				   {
					E T1n, T1q, T1m, T1p, T7M, T1o, T1t;
					T1n = ri[WS(rs, 28)];
					T1q = ii[WS(rs, 28)];
					T7V = FNMS(T1C, T1A, T7U);
					T1E = FMA(T1C, T1D, T1B);
					T1m = W[54];
					T1p = W[55];
					T1u = ri[WS(rs, 12)];
					T1x = ii[WS(rs, 12)];
					T7M = T1m * T1q;
					T1o = T1m * T1n;
					T1t = W[22];
					T1w = W[23];
					T7N = FNMS(T1p, T1n, T7M);
					T1r = FMA(T1p, T1q, T1o);
					T7S = T1t * T1x;
					T1v = T1t * T1u;
				   }
			      }
			      {
				   E T7O, TeX, T1s, T7R, T7T, T1y;
				   T7O = T7L - T7N;
				   TeX = T7L + T7N;
				   T1s = T1l + T1r;
				   T7R = T1l - T1r;
				   T7T = FNMS(T1w, T1u, T7S);
				   T1y = FMA(T1w, T1x, T1v);
				   {
					E T7W, TeY, T7P, T1F;
					T7W = T7T - T7V;
					TeY = T7T + T7V;
					T7P = T1y - T1E;
					T1F = T1y + T1E;
					TeZ = TeX - TeY;
					Ths = TeX + TeY;
					T7Q = T7O + T7P;
					TcJ = T7O - T7P;
					T1G = T1s + T1F;
					TeW = T1s - T1F;
					TcI = T7R + T7W;
					T7X = T7R - T7W;
				   }
			      }
			 }
		    }
		    {
			 E T82, T1O, T8s, T27, T1X, T20, T1Z, T84, T1U, T8p, T1Y;
			 {
			      E T23, T26, T25, T8r, T24;
			      {
				   E T1K, T1N, T1J, T1M, T81, T1L, T22;
				   T1K = ri[WS(rs, 2)];
				   T1N = ii[WS(rs, 2)];
				   T1J = W[2];
				   T1M = W[3];
				   T23 = ri[WS(rs, 50)];
				   T26 = ii[WS(rs, 50)];
				   T81 = T1J * T1N;
				   T1L = T1J * T1K;
				   T22 = W[98];
				   T25 = W[99];
				   T82 = FNMS(T1M, T1K, T81);
				   T1O = FMA(T1M, T1N, T1L);
				   T8r = T22 * T26;
				   T24 = T22 * T23;
			      }
			      {
				   E T1Q, T1T, T1P, T1S, T83, T1R, T1W;
				   T1Q = ri[WS(rs, 34)];
				   T1T = ii[WS(rs, 34)];
				   T8s = FNMS(T25, T23, T8r);
				   T27 = FMA(T25, T26, T24);
				   T1P = W[66];
				   T1S = W[67];
				   T1X = ri[WS(rs, 18)];
				   T20 = ii[WS(rs, 18)];
				   T83 = T1P * T1T;
				   T1R = T1P * T1Q;
				   T1W = W[34];
				   T1Z = W[35];
				   T84 = FNMS(T1S, T1Q, T83);
				   T1U = FMA(T1S, T1T, T1R);
				   T8p = T1W * T20;
				   T1Y = T1W * T1X;
			      }
			 }
			 {
			      E T85, Tf3, T1V, T8o, T8q, T21;
			      T85 = T82 - T84;
			      Tf3 = T82 + T84;
			      T1V = T1O + T1U;
			      T8o = T1O - T1U;
			      T8q = FNMS(T1Z, T1X, T8p);
			      T21 = FMA(T1Z, T20, T1Y);
			      {
				   E T8t, Tf4, T86, T28;
				   T8t = T8q - T8s;
				   Tf4 = T8q + T8s;
				   T86 = T21 - T27;
				   T28 = T21 + T27;
				   Tf5 = Tf3 - Tf4;
				   Thv = Tf3 + Tf4;
				   T87 = T85 + T86;
				   TcN = T85 - T86;
				   T29 = T1V + T28;
				   Tf8 = T1V - T28;
				   TcQ = T8o + T8t;
				   T8u = T8o - T8t;
			      }
			 }
		    }
		    {
			 E Tal, T5p, Tbh, T5I, T5y, T5B, T5A, Tan, T5v, Tbe, T5z;
			 {
			      E T5E, T5H, T5G, Tbg, T5F;
			      {
				   E T5l, T5o, T5k, T5n, Tak, T5m, T5D;
				   T5l = ri[WS(rs, 63)];
				   T5o = ii[WS(rs, 63)];
				   T5k = W[124];
				   T5n = W[125];
				   T5E = ri[WS(rs, 47)];
				   T5H = ii[WS(rs, 47)];
				   Tak = T5k * T5o;
				   T5m = T5k * T5l;
				   T5D = W[92];
				   T5G = W[93];
				   Tal = FNMS(T5n, T5l, Tak);
				   T5p = FMA(T5n, T5o, T5m);
				   Tbg = T5D * T5H;
				   T5F = T5D * T5E;
			      }
			      {
				   E T5r, T5u, T5q, T5t, Tam, T5s, T5x;
				   T5r = ri[WS(rs, 31)];
				   T5u = ii[WS(rs, 31)];
				   Tbh = FNMS(T5G, T5E, Tbg);
				   T5I = FMA(T5G, T5H, T5F);
				   T5q = W[60];
				   T5t = W[61];
				   T5y = ri[WS(rs, 15)];
				   T5B = ii[WS(rs, 15)];
				   Tam = T5q * T5u;
				   T5s = T5q * T5r;
				   T5x = W[28];
				   T5A = W[29];
				   Tan = FNMS(T5t, T5r, Tam);
				   T5v = FMA(T5t, T5u, T5s);
				   Tbe = T5x * T5B;
				   T5z = T5x * T5y;
			      }
			 }
			 {
			      E Tao, TfS, T5w, Tbd, Tbf, T5C;
			      Tao = Tal - Tan;
			      TfS = Tal + Tan;
			      T5w = T5p + T5v;
			      Tbd = T5p - T5v;
			      Tbf = FNMS(T5A, T5y, Tbe);
			      T5C = FMA(T5A, T5B, T5z);
			      {
				   E Tbi, TfT, Tap, T5J;
				   Tbi = Tbf - Tbh;
				   TfT = Tbf + Tbh;
				   Tap = T5C - T5I;
				   T5J = T5C + T5I;
				   TfU = TfS - TfT;
				   ThS = TfS + TfT;
				   Taq = Tao + Tap;
				   Tdm = Tao - Tap;
				   T5K = T5w + T5J;
				   Tg9 = T5w - T5J;
				   Tdx = Tbd + Tbi;
				   Tbj = Tbd - Tbi;
			      }
			 }
		    }
		    {
			 E T7G, T1d, T7z, TeS, T11, T7C, T7E, T17, T7r, T7m;
			 {
			      E T7g, Ts, T7q, TL, TB, TE, TD, T7i, Ty, T7n, TC;
			      {
				   E TH, TK, TJ, T7p, TI;
				   {
					E To, Tr, Tn, Tq, T7f, Tp, TG;
					To = ri[WS(rs, 8)];
					Tr = ii[WS(rs, 8)];
					Tn = W[14];
					Tq = W[15];
					TH = ri[WS(rs, 24)];
					TK = ii[WS(rs, 24)];
					T7f = Tn * Tr;
					Tp = Tn * To;
					TG = W[46];
					TJ = W[47];
					T7g = FNMS(Tq, To, T7f);
					Ts = FMA(Tq, Tr, Tp);
					T7p = TG * TK;
					TI = TG * TH;
				   }
				   {
					E Tu, Tx, Tt, Tw, T7h, Tv, TA;
					Tu = ri[WS(rs, 40)];
					Tx = ii[WS(rs, 40)];
					T7q = FNMS(TJ, TH, T7p);
					TL = FMA(TJ, TK, TI);
					Tt = W[78];
					Tw = W[79];
					TB = ri[WS(rs, 56)];
					TE = ii[WS(rs, 56)];
					T7h = Tt * Tx;
					Tv = Tt * Tu;
					TA = W[110];
					TD = W[111];
					T7i = FNMS(Tw, Tu, T7h);
					Ty = FMA(Tw, Tx, Tv);
					T7n = TA * TE;
					TC = TA * TB;
				   }
			      }
			      {
				   E T7j, TeN, Tz, T7k, T7o, TF, TeO, TM;
				   T7j = T7g - T7i;
				   TeN = T7g + T7i;
				   Tz = Ts + Ty;
				   T7k = Ts - Ty;
				   T7o = FNMS(TD, TB, T7n);
				   TF = FMA(TD, TE, TC);
				   T7r = T7o - T7q;
				   TeO = T7o + T7q;
				   TM = TF + TL;
				   T7m = TF - TL;
				   TcB = T7k + T7j;
				   T7l = T7j - T7k;
				   TiP = TeN + TeO;
				   TeP = TeN - TeO;
				   Tjl = TM - Tz;
				   TN = Tz + TM;
			      }
			 }
			 {
			      E T7w, TU, T13, T16, T7y, T10, T12, T15, T7D, T14;
			      {
				   E T19, T1c, T18, T1b;
				   {
					E TQ, TT, TS, T7v, TR, TP;
					TQ = ri[WS(rs, 4)];
					TT = ii[WS(rs, 4)];
					TP = W[6];
					TcC = T7m - T7r;
					T7s = T7m + T7r;
					TS = W[7];
					T7v = TP * TT;
					TR = TP * TQ;
					T19 = ri[WS(rs, 52)];
					T1c = ii[WS(rs, 52)];
					T7w = FNMS(TS, TQ, T7v);
					TU = FMA(TS, TT, TR);
					T18 = W[102];
					T1b = W[103];
				   }
				   {
					E TW, TZ, TY, T7x, TX, T7F, T1a, TV;
					TW = ri[WS(rs, 36)];
					TZ = ii[WS(rs, 36)];
					T7F = T18 * T1c;
					T1a = T18 * T19;
					TV = W[70];
					TY = W[71];
					T7G = FNMS(T1b, T19, T7F);
					T1d = FMA(T1b, T1c, T1a);
					T7x = TV * TZ;
					TX = TV * TW;
					T13 = ri[WS(rs, 20)];
					T16 = ii[WS(rs, 20)];
					T7y = FNMS(TY, TW, T7x);
					T10 = FMA(TY, TZ, TX);
					T12 = W[38];
					T15 = W[39];
				   }
			      }
			      T7z = T7w - T7y;
			      TeS = T7w + T7y;
			      T11 = TU + T10;
			      T7C = TU - T10;
			      T7D = T12 * T16;
			      T14 = T12 * T13;
			      T7E = FNMS(T15, T13, T7D);
			      T17 = FMA(T15, T16, T14);
			 }
			 {
			      E T8B, T2H, T91, T30, T2Q, T2T, T2S, T8D, T2N, T8Y, T2R;
			      {
				   E T2W, T2Z, T2Y, T90, T2X;
				   {
					E T2D, T2G, T2C, T2F, T8A, T2E, T2V;
					T2D = ri[WS(rs, 62)];
					T2G = ii[WS(rs, 62)];
					{
					     E TeT, T7H, T1e, T7A;
					     TeT = T7E + T7G;
					     T7H = T7E - T7G;
					     T1e = T17 + T1d;
					     T7A = T17 - T1d;
					     T7I = T7C - T7H;
					     TcF = T7C + T7H;
					     TeU = TeS - TeT;
					     Thr = TeS + TeT;
					     T7B = T7z + T7A;
					     TcG = T7z - T7A;
					     T1f = T11 + T1e;
					     TeR = T11 - T1e;
					     T2C = W[122];
					}
					T2F = W[123];
					T2W = ri[WS(rs, 46)];
					T2Z = ii[WS(rs, 46)];
					T8A = T2C * T2G;
					T2E = T2C * T2D;
					T2V = W[90];
					T2Y = W[91];
					T8B = FNMS(T2F, T2D, T8A);
					T2H = FMA(T2F, T2G, T2E);
					T90 = T2V * T2Z;
					T2X = T2V * T2W;
				   }
				   {
					E T2J, T2M, T2I, T2L, T8C, T2K, T2P;
					T2J = ri[WS(rs, 30)];
					T2M = ii[WS(rs, 30)];
					T91 = FNMS(T2Y, T2W, T90);
					T30 = FMA(T2Y, T2Z, T2X);
					T2I = W[58];
					T2L = W[59];
					T2Q = ri[WS(rs, 14)];
					T2T = ii[WS(rs, 14)];
					T8C = T2I * T2M;
					T2K = T2I * T2J;
					T2P = W[26];
					T2S = W[27];
					T8D = FNMS(T2L, T2J, T8C);
					T2N = FMA(T2L, T2M, T2K);
					T8Y = T2P * T2T;
					T2R = T2P * T2Q;
				   }
			      }
			      {
				   E T8E, Tfe, T2O, T8X, T8Z, T2U;
				   T8E = T8B - T8D;
				   Tfe = T8B + T8D;
				   T2O = T2H + T2N;
				   T8X = T2H - T2N;
				   T8Z = FNMS(T2S, T2Q, T8Y);
				   T2U = FMA(T2S, T2T, T2R);
				   {
					E T92, Tff, T8F, T31;
					T92 = T8Z - T91;
					Tff = T8Z + T91;
					T8F = T2U - T30;
					T31 = T2U + T30;
					Tfg = Tfe - Tff;
					ThB = Tfe + Tff;
					T8G = T8E + T8F;
					TcU = T8E - T8F;
					T32 = T2O + T31;
					Tfj = T2O - T31;
					TcX = T8X + T92;
					T93 = T8X - T92;
				   }
			      }
			 }
			 {
			      E T9c, T3C, Ta8, T3V, T3L, T3O, T3N, T9e, T3I, Ta5, T3M;
			      {
				   E T3R, T3U, T3T, Ta7, T3S;
				   {
					E T3y, T3B, T3x, T3A, T9b, T3z, T3Q;
					T3y = ri[WS(rs, 1)];
					T3B = ii[WS(rs, 1)];
					T3x = W[0];
					T3A = W[1];
					T3R = ri[WS(rs, 49)];
					T3U = ii[WS(rs, 49)];
					T9b = T3x * T3B;
					T3z = T3x * T3y;
					T3Q = W[96];
					T3T = W[97];
					T9c = FNMS(T3A, T3y, T9b);
					T3C = FMA(T3A, T3B, T3z);
					Ta7 = T3Q * T3U;
					T3S = T3Q * T3R;
				   }
				   {
					E T3E, T3H, T3D, T3G, T9d, T3F, T3K;
					T3E = ri[WS(rs, 33)];
					T3H = ii[WS(rs, 33)];
					Ta8 = FNMS(T3T, T3R, Ta7);
					T3V = FMA(T3T, T3U, T3S);
					T3D = W[64];
					T3G = W[65];
					T3L = ri[WS(rs, 17)];
					T3O = ii[WS(rs, 17)];
					T9d = T3D * T3H;
					T3F = T3D * T3E;
					T3K = W[32];
					T3N = W[33];
					T9e = FNMS(T3G, T3E, T9d);
					T3I = FMA(T3G, T3H, T3F);
					Ta5 = T3K * T3O;
					T3M = T3K * T3L;
				   }
			      }
			      {
				   E T9f, Tfr, T3J, Ta4, Ta6, T3P;
				   T9f = T9c - T9e;
				   Tfr = T9c + T9e;
				   T3J = T3C + T3I;
				   Ta4 = T3C - T3I;
				   Ta6 = FNMS(T3N, T3L, Ta5);
				   T3P = FMA(T3N, T3O, T3M);
				   {
					E Ta9, Tfs, T9g, T3W;
					Ta9 = Ta6 - Ta8;
					Tfs = Ta6 + Ta8;
					T9g = T3P - T3V;
					T3W = T3P + T3V;
					Tft = Tfr - Tfs;
					ThH = Tfr + Tfs;
					T9h = T9f + T9g;
					Td3 = T9f - T9g;
					T3X = T3J + T3W;
					TfI = T3J - T3W;
					Tde = Ta4 + Ta9;
					Taa = Ta4 - Ta9;
				   }
			      }
			 }
		    }
		    {
			 E TaC, T69, Taw, Tga, T5X, Tar, TaA, T63;
			 {
			      E T8S, T3r, T8M, Tfk, T3f, T8H, T8Q, T3l;
			      {
				   E T8k, T8f, T8w, T8e;
				   {
					E T8a, T2f, T8j, T2y, T2o, T2r, T2q, T8c, T2l, T8g, T2p;
					{
					     E T2u, T2x, T2w, T8i, T2v;
					     {
						  E T2b, T2e, T2a, T2d, T89, T2c, T2t;
						  T2b = ri[WS(rs, 10)];
						  T2e = ii[WS(rs, 10)];
						  T2a = W[18];
						  T2d = W[19];
						  T2u = ri[WS(rs, 26)];
						  T2x = ii[WS(rs, 26)];
						  T89 = T2a * T2e;
						  T2c = T2a * T2b;
						  T2t = W[50];
						  T2w = W[51];
						  T8a = FNMS(T2d, T2b, T89);
						  T2f = FMA(T2d, T2e, T2c);
						  T8i = T2t * T2x;
						  T2v = T2t * T2u;
					     }
					     {
						  E T2h, T2k, T2g, T2j, T8b, T2i, T2n;
						  T2h = ri[WS(rs, 42)];
						  T2k = ii[WS(rs, 42)];
						  T8j = FNMS(T2w, T2u, T8i);
						  T2y = FMA(T2w, T2x, T2v);
						  T2g = W[82];
						  T2j = W[83];
						  T2o = ri[WS(rs, 58)];
						  T2r = ii[WS(rs, 58)];
						  T8b = T2g * T2k;
						  T2i = T2g * T2h;
						  T2n = W[114];
						  T2q = W[115];
						  T8c = FNMS(T2j, T2h, T8b);
						  T2l = FMA(T2j, T2k, T2i);
						  T8g = T2n * T2r;
						  T2p = T2n * T2o;
					     }
					}
					{
					     E T8d, Tf9, T2m, T88, T8h, T2s, Tfa, T2z;
					     T8d = T8a - T8c;
					     Tf9 = T8a + T8c;
					     T2m = T2f + T2l;
					     T88 = T2f - T2l;
					     T8h = FNMS(T2q, T2o, T8g);
					     T2s = FMA(T2q, T2r, T2p);
					     T8k = T8h - T8j;
					     Tfa = T8h + T8j;
					     T2z = T2s + T2y;
					     T8f = T2s - T2y;
					     T8w = T8d - T88;
					     T8e = T88 + T8d;
					     Thw = Tf9 + Tfa;
					     Tfb = Tf9 - Tfa;
					     Tf6 = T2z - T2m;
					     T2A = T2m + T2z;
					}
				   }
				   {
					E T38, T8J, T3h, T3k, T8L, T3e, T3g, T3j, T8P, T3i;
					{
					     E T3n, T3q, T3m, T3p;
					     {
						  E T34, T37, T33, T8v, T8l, T36, T8I, T35;
						  T34 = ri[WS(rs, 6)];
						  T37 = ii[WS(rs, 6)];
						  T33 = W[10];
						  T8v = T8f + T8k;
						  T8l = T8f - T8k;
						  T36 = W[11];
						  T8I = T33 * T37;
						  T35 = T33 * T34;
						  T8x = T8v - T8w;
						  TcO = T8w + T8v;
						  T8m = T8e - T8l;
						  TcR = T8e + T8l;
						  T38 = FMA(T36, T37, T35);
						  T8J = FNMS(T36, T34, T8I);
					     }
					     T3n = ri[WS(rs, 22)];
					     T3q = ii[WS(rs, 22)];
					     T3m = W[42];
					     T3p = W[43];
					     {
						  E T3a, T3d, T3c, T8K, T3b, T8R, T3o, T39;
						  T3a = ri[WS(rs, 38)];
						  T3d = ii[WS(rs, 38)];
						  T8R = T3m * T3q;
						  T3o = T3m * T3n;
						  T39 = W[74];
						  T3c = W[75];
						  T8S = FNMS(T3p, T3n, T8R);
						  T3r = FMA(T3p, T3q, T3o);
						  T8K = T39 * T3d;
						  T3b = T39 * T3a;
						  T3h = ri[WS(rs, 54)];
						  T3k = ii[WS(rs, 54)];
						  T8L = FNMS(T3c, T3a, T8K);
						  T3e = FMA(T3c, T3d, T3b);
						  T3g = W[106];
						  T3j = W[107];
					     }
					}
					T8M = T8J - T8L;
					Tfk = T8J + T8L;
					T3f = T38 + T3e;
					T8H = T38 - T3e;
					T8P = T3g * T3k;
					T3i = T3g * T3h;
					T8Q = FNMS(T3j, T3h, T8P);
					T3l = FMA(T3j, T3k, T3i);
				   }
			      }
			      {
				   E T9u, T9p, Tac, T9o;
				   {
					E T9k, T43, T9t, T4m, T4c, T4f, T4e, T9m, T49, T9q, T4d;
					{
					     E T4i, T4l, T4k, T9s, T4j;
					     {
						  E T3Z, T42, T3Y, T41, T9j, T40, T4h;
						  {
						       E T95, T8N, T8T, Tfl, T8O, T3s, T8U, T94;
						       T3Z = ri[WS(rs, 9)];
						       T95 = T8M - T8H;
						       T8N = T8H + T8M;
						       T8T = T8Q - T8S;
						       Tfl = T8Q + T8S;
						       T8O = T3l - T3r;
						       T3s = T3l + T3r;
						       T42 = ii[WS(rs, 9)];
						       Tfm = Tfk - Tfl;
						       ThC = Tfk + Tfl;
						       T8U = T8O - T8T;
						       T94 = T8O + T8T;
						       T3t = T3f + T3s;
						       Tfh = T3s - T3f;
						       T96 = T94 - T95;
						       TcV = T95 + T94;
						       T8V = T8N - T8U;
						       TcY = T8N + T8U;
						       T3Y = W[16];
						  }
						  T41 = W[17];
						  T4i = ri[WS(rs, 25)];
						  T4l = ii[WS(rs, 25)];
						  T9j = T3Y * T42;
						  T40 = T3Y * T3Z;
						  T4h = W[48];
						  T4k = W[49];
						  T9k = FNMS(T41, T3Z, T9j);
						  T43 = FMA(T41, T42, T40);
						  T9s = T4h * T4l;
						  T4j = T4h * T4i;
					     }
					     {
						  E T45, T48, T44, T47, T9l, T46, T4b;
						  T45 = ri[WS(rs, 41)];
						  T48 = ii[WS(rs, 41)];
						  T9t = FNMS(T4k, T4i, T9s);
						  T4m = FMA(T4k, T4l, T4j);
						  T44 = W[80];
						  T47 = W[81];
						  T4c = ri[WS(rs, 57)];
						  T4f = ii[WS(rs, 57)];
						  T9l = T44 * T48;
						  T46 = T44 * T45;
						  T4b = W[112];
						  T4e = W[113];
						  T9m = FNMS(T47, T45, T9l);
						  T49 = FMA(T47, T48, T46);
						  T9q = T4b * T4f;
						  T4d = T4b * T4c;
					     }
					}
					{
					     E T9n, TfJ, T4a, T9i, T9r, T4g, TfK, T4n;
					     T9n = T9k - T9m;
					     TfJ = T9k + T9m;
					     T4a = T43 + T49;
					     T9i = T43 - T49;
					     T9r = FNMS(T4e, T4c, T9q);
					     T4g = FMA(T4e, T4f, T4d);
					     T9u = T9r - T9t;
					     TfK = T9r + T9t;
					     T4n = T4g + T4m;
					     T9p = T4g - T4m;
					     Tac = T9n - T9i;
					     T9o = T9i + T9n;
					     ThI = TfJ + TfK;
					     TfL = TfJ - TfK;
					     Tfu = T4n - T4a;
					     T4o = T4a + T4n;
					}
				   }
				   {
					E T5Q, Tat, T5Z, T62, Tav, T5W, T5Y, T61, Taz, T60;
					{
					     E T65, T68, T64, T67;
					     {
						  E T5M, T5P, T5L, Tab, T9v, T5O, Tas, T5N;
						  T5M = ri[WS(rs, 7)];
						  T5P = ii[WS(rs, 7)];
						  T5L = W[12];
						  Tab = T9p + T9u;
						  T9v = T9p - T9u;
						  T5O = W[13];
						  Tas = T5L * T5P;
						  T5N = T5L * T5M;
						  Tad = Tab - Tac;
						  Td4 = Tac + Tab;
						  T9w = T9o - T9v;
						  Tdf = T9o + T9v;
						  T5Q = FMA(T5O, T5P, T5N);
						  Tat = FNMS(T5O, T5M, Tas);
					     }
					     T65 = ri[WS(rs, 23)];
					     T68 = ii[WS(rs, 23)];
					     T64 = W[44];
					     T67 = W[45];
					     {
						  E T5S, T5V, T5U, Tau, T5T, TaB, T66, T5R;
						  T5S = ri[WS(rs, 39)];
						  T5V = ii[WS(rs, 39)];
						  TaB = T64 * T68;
						  T66 = T64 * T65;
						  T5R = W[76];
						  T5U = W[77];
						  TaC = FNMS(T67, T65, TaB);
						  T69 = FMA(T67, T68, T66);
						  Tau = T5R * T5V;
						  T5T = T5R * T5S;
						  T5Z = ri[WS(rs, 55)];
						  T62 = ii[WS(rs, 55)];
						  Tav = FNMS(T5U, T5S, Tau);
						  T5W = FMA(T5U, T5V, T5T);
						  T5Y = W[108];
						  T61 = W[109];
					     }
					}
					Taw = Tat - Tav;
					Tga = Tat + Tav;
					T5X = T5Q + T5W;
					Tar = T5Q - T5W;
					Taz = T5Y * T62;
					T60 = T5Y * T5Z;
					TaA = FNMS(T61, T5Z, Taz);
					T63 = FMA(T61, T62, T60);
				   }
			      }
			 }
			 {
			      E T9E, Tda, TfE, TfB, Td9, T9L;
			      {
				   E T9T, Td7, Tfy, Tfz, Td6, Ta0;
				   {
					E T9V, T4v, T9R, T4O, T4E, T4H, T4G, T9X, T4B, T9O, T4F;
					{
					     E T4K, T4N, T4M, T9Q, T4L;
					     {
						  E T4r, T4u, T4q, T4t, T9U, T4s, T4J;
						  {
						       E Tbl, Tax, TaD, Tgb, Tay, T6a, TaE, Tbk;
						       T4r = ri[WS(rs, 5)];
						       Tbl = Taw - Tar;
						       Tax = Tar + Taw;
						       TaD = TaA - TaC;
						       Tgb = TaA + TaC;
						       Tay = T63 - T69;
						       T6a = T63 + T69;
						       T4u = ii[WS(rs, 5)];
						       Tgc = Tga - Tgb;
						       ThT = Tga + Tgb;
						       TaE = Tay - TaD;
						       Tbk = Tay + TaD;
						       T6b = T5X + T6a;
						       TfV = T6a - T5X;
						       Tbm = Tbk - Tbl;
						       Tdn = Tbl + Tbk;
						       TaF = Tax - TaE;
						       Tdy = Tax + TaE;
						       T4q = W[8];
						  }
						  T4t = W[9];
						  T4K = ri[WS(rs, 53)];
						  T4N = ii[WS(rs, 53)];
						  T9U = T4q * T4u;
						  T4s = T4q * T4r;
						  T4J = W[104];
						  T4M = W[105];
						  T9V = FNMS(T4t, T4r, T9U);
						  T4v = FMA(T4t, T4u, T4s);
						  T9Q = T4J * T4N;
						  T4L = T4J * T4K;
					     }
					     {
						  E T4x, T4A, T4w, T4z, T9W, T4y, T4D;
						  T4x = ri[WS(rs, 37)];
						  T4A = ii[WS(rs, 37)];
						  T9R = FNMS(T4M, T4K, T9Q);
						  T4O = FMA(T4M, T4N, T4L);
						  T4w = W[72];
						  T4z = W[73];
						  T4E = ri[WS(rs, 21)];
						  T4H = ii[WS(rs, 21)];
						  T9W = T4w * T4A;
						  T4y = T4w * T4x;
						  T4D = W[40];
						  T4G = W[41];
						  T9X = FNMS(T4z, T4x, T9W);
						  T4B = FMA(T4z, T4A, T4y);
						  T9O = T4D * T4H;
						  T4F = T4D * T4E;
					     }
					}
					{
					     E T9Y, Tfw, T4C, T9N, T9P, T4I;
					     T9Y = T9V - T9X;
					     Tfw = T9V + T9X;
					     T4C = T4v + T4B;
					     T9N = T4v - T4B;
					     T9P = FNMS(T4G, T4E, T9O);
					     T4I = FMA(T4G, T4H, T4F);
					     {
						  E Tfx, T9S, T9Z, T4P;
						  Tfx = T9P + T9R;
						  T9S = T9P - T9R;
						  T9Z = T4I - T4O;
						  T4P = T4I + T4O;
						  T9T = T9N - T9S;
						  Td7 = T9N + T9S;
						  Tfy = Tfw - Tfx;
						  ThN = Tfw + Tfx;
						  Tfz = T4C - T4P;
						  T4Q = T4C + T4P;
						  Td6 = T9Y - T9Z;
						  Ta0 = T9Y + T9Z;
					     }
					}
				   }
				   {
					E T9G, T4W, T9C, T5f, T55, T58, T57, T9I, T52, T9z, T56;
					{
					     E T5b, T5e, T5d, T9B, T5c;
					     {
						  E T4S, T4V, T4R, T4U, T9F, T4T, T5a;
						  T4S = ri[WS(rs, 61)];
						  TfN = Tfz + Tfy;
						  TfA = Tfy - Tfz;
						  Taf = FMA(KP414213562, T9T, Ta0);
						  Ta1 = FNMS(KP414213562, Ta0, T9T);
						  Td8 = FNMS(KP414213562, Td7, Td6);
						  Tdh = FMA(KP414213562, Td6, Td7);
						  T4V = ii[WS(rs, 61)];
						  T4R = W[120];
						  T4U = W[121];
						  T5b = ri[WS(rs, 45)];
						  T5e = ii[WS(rs, 45)];
						  T9F = T4R * T4V;
						  T4T = T4R * T4S;
						  T5a = W[88];
						  T5d = W[89];
						  T9G = FNMS(T4U, T4S, T9F);
						  T4W = FMA(T4U, T4V, T4T);
						  T9B = T5a * T5e;
						  T5c = T5a * T5b;
					     }
					     {
						  E T4Y, T51, T4X, T50, T9H, T4Z, T54;
						  T4Y = ri[WS(rs, 29)];
						  T51 = ii[WS(rs, 29)];
						  T9C = FNMS(T5d, T5b, T9B);
						  T5f = FMA(T5d, T5e, T5c);
						  T4X = W[56];
						  T50 = W[57];
						  T55 = ri[WS(rs, 13)];
						  T58 = ii[WS(rs, 13)];
						  T9H = T4X * T51;
						  T4Z = T4X * T4Y;
						  T54 = W[24];
						  T57 = W[25];
						  T9I = FNMS(T50, T4Y, T9H);
						  T52 = FMA(T50, T51, T4Z);
						  T9z = T54 * T58;
						  T56 = T54 * T55;
					     }
					}
					{
					     E T9J, TfC, T53, T9y, T9A, T59;
					     T9J = T9G - T9I;
					     TfC = T9G + T9I;
					     T53 = T4W + T52;
					     T9y = T4W - T52;
					     T9A = FNMS(T57, T55, T9z);
					     T59 = FMA(T57, T58, T56);
					     {
						  E TfD, T9D, T9K, T5g;
						  TfD = T9A + T9C;
						  T9D = T9A - T9C;
						  T9K = T59 - T5f;
						  T5g = T59 + T5f;
						  T9E = T9y - T9D;
						  Tda = T9y + T9D;
						  TfE = TfC - TfD;
						  ThO = TfC + TfD;
						  TfB = T53 - T5g;
						  T5h = T53 + T5g;
						  Td9 = T9J - T9K;
						  T9L = T9J + T9K;
					     }
					}
				   }
			      }
			      {
				   E Tb2, Tdq, TfZ, Tg0, Tdp, Tb9;
				   {
					E Tb4, T6i, Tb0, T6B, T6r, T6u, T6t, Tb6, T6o, TaX, T6s;
					{
					     E T6x, T6A, T6z, TaZ, T6y;
					     {
						  E T6e, T6h, T6d, T6g, Tb3, T6f, T6w;
						  T6e = ri[WS(rs, 3)];
						  TfO = TfB - TfE;
						  TfF = TfB + TfE;
						  Tag = FNMS(KP414213562, T9E, T9L);
						  T9M = FMA(KP414213562, T9L, T9E);
						  Tdb = FMA(KP414213562, Tda, Td9);
						  Tdi = FNMS(KP414213562, Td9, Tda);
						  T6h = ii[WS(rs, 3)];
						  T6d = W[4];
						  T6g = W[5];
						  T6x = ri[WS(rs, 51)];
						  T6A = ii[WS(rs, 51)];
						  Tb3 = T6d * T6h;
						  T6f = T6d * T6e;
						  T6w = W[100];
						  T6z = W[101];
						  Tb4 = FNMS(T6g, T6e, Tb3);
						  T6i = FMA(T6g, T6h, T6f);
						  TaZ = T6w * T6A;
						  T6y = T6w * T6x;
					     }
					     {
						  E T6k, T6n, T6j, T6m, Tb5, T6l, T6q;
						  T6k = ri[WS(rs, 35)];
						  T6n = ii[WS(rs, 35)];
						  Tb0 = FNMS(T6z, T6x, TaZ);
						  T6B = FMA(T6z, T6A, T6y);
						  T6j = W[68];
						  T6m = W[69];
						  T6r = ri[WS(rs, 19)];
						  T6u = ii[WS(rs, 19)];
						  Tb5 = T6j * T6n;
						  T6l = T6j * T6k;
						  T6q = W[36];
						  T6t = W[37];
						  Tb6 = FNMS(T6m, T6k, Tb5);
						  T6o = FMA(T6m, T6n, T6l);
						  TaX = T6q * T6u;
						  T6s = T6q * T6r;
					     }
					}
					{
					     E Tb7, TfX, T6p, TaW, TaY, T6v;
					     Tb7 = Tb4 - Tb6;
					     TfX = Tb4 + Tb6;
					     T6p = T6i + T6o;
					     TaW = T6i - T6o;
					     TaY = FNMS(T6t, T6r, TaX);
					     T6v = FMA(T6t, T6u, T6s);
					     {
						  E TfY, Tb1, Tb8, T6C;
						  TfY = TaY + Tb0;
						  Tb1 = TaY - Tb0;
						  Tb8 = T6v - T6B;
						  T6C = T6v + T6B;
						  Tb2 = TaW - Tb1;
						  Tdq = TaW + Tb1;
						  TfZ = TfX - TfY;
						  ThY = TfX + TfY;
						  Tg0 = T6p - T6C;
						  T6D = T6p + T6C;
						  Tdp = Tb7 - Tb8;
						  Tb9 = Tb7 + Tb8;
					     }
					}
				   }
				   {
					E TaP, T6J, TaL, T72, T6S, T6V, T6U, TaR, T6P, TaI, T6T;
					{
					     E T6Y, T71, T70, TaK, T6Z;
					     {
						  E T6F, T6I, T6E, T6H, TaO, T6G, T6X;
						  T6F = ri[WS(rs, 59)];
						  Tge = Tg0 + TfZ;
						  Tg1 = TfZ - Tg0;
						  Tbo = FMA(KP414213562, Tb2, Tb9);
						  Tba = FNMS(KP414213562, Tb9, Tb2);
						  Tdr = FNMS(KP414213562, Tdq, Tdp);
						  TdA = FMA(KP414213562, Tdp, Tdq);
						  T6I = ii[WS(rs, 59)];
						  T6E = W[116];
						  T6H = W[117];
						  T6Y = ri[WS(rs, 43)];
						  T71 = ii[WS(rs, 43)];
						  TaO = T6E * T6I;
						  T6G = T6E * T6F;
						  T6X = W[84];
						  T70 = W[85];
						  TaP = FNMS(T6H, T6F, TaO);
						  T6J = FMA(T6H, T6I, T6G);
						  TaK = T6X * T71;
						  T6Z = T6X * T6Y;
					     }
					     {
						  E T6L, T6O, T6K, T6N, TaQ, T6M, T6R;
						  T6L = ri[WS(rs, 27)];
						  T6O = ii[WS(rs, 27)];
						  TaL = FNMS(T70, T6Y, TaK);
						  T72 = FMA(T70, T71, T6Z);
						  T6K = W[52];
						  T6N = W[53];
						  T6S = ri[WS(rs, 11)];
						  T6V = ii[WS(rs, 11)];
						  TaQ = T6K * T6O;
						  T6M = T6K * T6L;
						  T6R = W[20];
						  T6U = W[21];
						  TaR = FNMS(T6N, T6L, TaQ);
						  T6P = FMA(T6N, T6O, T6M);
						  TaI = T6R * T6V;
						  T6T = T6R * T6S;
					     }
					}
					{
					     E TaS, Tg3, T6Q, TaH, TaJ, T6W;
					     TaS = TaP - TaR;
					     Tg3 = TaP + TaR;
					     T6Q = T6J + T6P;
					     TaH = T6J - T6P;
					     TaJ = FNMS(T6U, T6S, TaI);
					     T6W = FMA(T6U, T6V, T6T);
					     {
						  E Tg4, TaM, TaT, T73;
						  Tg4 = TaJ + TaL;
						  TaM = TaJ - TaL;
						  TaT = T6W - T72;
						  T73 = T6W + T72;
						  TaN = TaH - TaM;
						  Tdt = TaH + TaM;
						  Tg5 = Tg3 - Tg4;
						  ThZ = Tg3 + Tg4;
						  Tg2 = T6Q - T73;
						  T74 = T6Q + T73;
						  Tds = TaS - TaT;
						  TaU = TaS + TaT;
					     }
					}
				   }
			      }
			 }
		    }
		    {
			 E Tgf, Tg6, Tbp, TaV, Tdu, TdB, Tje, Tjd, TjO, TjN;
			 {
			      E Thq, Tj7, Thy, ThA, Tht, Tj8, Thx, ThD, ThX, ThV, ThU, Ti0, ThM, ThK, ThJ;
			      E ThP, TiI, TiZ, TiL, Tj0;
			      {
				   E Tio, T1I, Tj1, T3v, Tj2, TiX, TiN, Tir, T76, TiK, TiC, TiG, T5j, Tit, Tiw;
				   E TiJ;
				   {
					E TiO, TiW, Tip, Tiq;
					{
					     E TO, T1H, T2B, T3u;
					     Thq = Tm - TN;
					     TO = Tm + TN;
					     Tgf = Tg2 - Tg5;
					     Tg6 = Tg2 + Tg5;
					     Tbp = FNMS(KP414213562, TaN, TaU);
					     TaV = FMA(KP414213562, TaU, TaN);
					     Tdu = FMA(KP414213562, Tdt, Tds);
					     TdB = FNMS(KP414213562, Tds, Tdt);
					     T1H = T1f + T1G;
					     Tj7 = T1G - T1f;
					     Thy = T29 - T2A;
					     T2B = T29 + T2A;
					     T3u = T32 + T3t;
					     ThA = T32 - T3t;
					     Tht = Thr - Ths;
					     TiO = Thr + Ths;
					     Tio = TO - T1H;
					     T1I = TO + T1H;
					     Tj1 = T3u - T2B;
					     T3v = T2B + T3u;
					     TiW = TiP + TiV;
					     Tj8 = TiV - TiP;
					}
					Thx = Thv - Thw;
					Tip = Thv + Thw;
					Tiq = ThB + ThC;
					ThD = ThB - ThC;
					{
					     E T6c, T75, Tiz, TiA;
					     ThX = T5K - T6b;
					     T6c = T5K + T6b;
					     Tj2 = TiW - TiO;
					     TiX = TiO + TiW;
					     TiN = Tip + Tiq;
					     Tir = Tip - Tiq;
					     T75 = T6D + T74;
					     ThV = T74 - T6D;
					     ThU = ThS - ThT;
					     Tiz = ThS + ThT;
					     TiA = ThY + ThZ;
					     Ti0 = ThY - ThZ;
					     {
						  E T4p, Tiy, TiB, T5i, Tiu, Tiv;
						  ThM = T3X - T4o;
						  T4p = T3X + T4o;
						  T76 = T6c + T75;
						  Tiy = T6c - T75;
						  TiK = Tiz + TiA;
						  TiB = Tiz - TiA;
						  T5i = T4Q + T5h;
						  ThK = T5h - T4Q;
						  ThJ = ThH - ThI;
						  Tiu = ThH + ThI;
						  Tiv = ThN + ThO;
						  ThP = ThN - ThO;
						  TiC = Tiy - TiB;
						  TiG = Tiy + TiB;
						  T5j = T4p + T5i;
						  Tit = T4p - T5i;
						  Tiw = Tiu - Tiv;
						  TiJ = Tiu + Tiv;
					     }
					}
				   }
				   {
					E TiE, Tis, TiD, Tj6, Tj5, Tj3, Tj4, TiH;
					{
					     E T3w, TiF, Tix, T77, TiM, TiY;
					     TiI = T1I - T3v;
					     T3w = T1I + T3v;
					     TiF = Tiw - Tit;
					     Tix = Tit + Tiw;
					     T77 = T5j + T76;
					     TiZ = T76 - T5j;
					     TiL = TiJ - TiK;
					     TiM = TiJ + TiK;
					     TiY = TiN + TiX;
					     Tj0 = TiX - TiN;
					     TiE = Tio - Tir;
					     Tis = Tio + Tir;
					     ri[0] = T3w + T77;
					     ri[WS(rs, 32)] = T3w - T77;
					     ii[WS(rs, 32)] = TiY - TiM;
					     ii[0] = TiM + TiY;
					     TiD = Tix + TiC;
					     Tj6 = TiC - Tix;
					     Tj5 = Tj2 - Tj1;
					     Tj3 = Tj1 + Tj2;
					     Tj4 = TiF + TiG;
					     TiH = TiF - TiG;
					}
					ri[WS(rs, 8)] = FMA(KP707106781, TiD, Tis);
					ri[WS(rs, 40)] = FNMS(KP707106781, TiD, Tis);
					ii[WS(rs, 40)] = FNMS(KP707106781, Tj4, Tj3);
					ii[WS(rs, 8)] = FMA(KP707106781, Tj4, Tj3);
					ri[WS(rs, 24)] = FMA(KP707106781, TiH, TiE);
					ri[WS(rs, 56)] = FNMS(KP707106781, TiH, TiE);
					ii[WS(rs, 56)] = FNMS(KP707106781, Tj6, Tj5);
					ii[WS(rs, 24)] = FMA(KP707106781, Tj6, Tj5);
				   }
			      }
			      {
				   E Ti8, Thu, Tjf, Tj9, Tib, Tjg, Tja, ThF, Tih, ThW, Tif, Til, Ti5, ThR;
				   ri[WS(rs, 16)] = TiI + TiL;
				   ri[WS(rs, 48)] = TiI - TiL;
				   ii[WS(rs, 48)] = Tj0 - TiZ;
				   ii[WS(rs, 16)] = TiZ + Tj0;
				   Ti8 = Thq + Tht;
				   Thu = Thq - Tht;
				   Tjf = Tj8 - Tj7;
				   Tj9 = Tj7 + Tj8;
				   {
					E Tie, ThL, Tid, ThQ;
					{
					     E Ti9, Thz, Tia, ThE;
					     Ti9 = Thy + Thx;
					     Thz = Thx - Thy;
					     Tia = ThA - ThD;
					     ThE = ThA + ThD;
					     Tib = Ti9 + Tia;
					     Tjg = Tia - Ti9;
					     Tja = Thz + ThE;
					     ThF = Thz - ThE;
					     Tie = ThJ + ThK;
					     ThL = ThJ - ThK;
					}
					Tid = ThM + ThP;
					ThQ = ThM - ThP;
					Tih = ThU + ThV;
					ThW = ThU - ThV;
					Tif = FMA(KP414213562, Tie, Tid);
					Til = FNMS(KP414213562, Tid, Tie);
					Ti5 = FNMS(KP414213562, ThL, ThQ);
					ThR = FMA(KP414213562, ThQ, ThL);
				   }
				   {
					E Ti4, ThG, Tjh, Tjj, Tig, Ti1;
					Ti4 = FNMS(KP707106781, ThF, Thu);
					ThG = FMA(KP707106781, ThF, Thu);
					Tjh = FMA(KP707106781, Tjg, Tjf);
					Tjj = FNMS(KP707106781, Tjg, Tjf);
					Tig = ThX + Ti0;
					Ti1 = ThX - Ti0;
					{
					     E Tik, Tjb, Tjc, Tin;
					     {
						  E Tic, Tim, Ti6, Ti2, Tij, Tii;
						  Tik = FNMS(KP707106781, Tib, Ti8);
						  Tic = FMA(KP707106781, Tib, Ti8);
						  Tii = FNMS(KP414213562, Tih, Tig);
						  Tim = FMA(KP414213562, Tig, Tih);
						  Ti6 = FMA(KP414213562, ThW, Ti1);
						  Ti2 = FNMS(KP414213562, Ti1, ThW);
						  Tij = Tif + Tii;
						  Tje = Tii - Tif;
						  Tjd = FNMS(KP707106781, Tja, Tj9);
						  Tjb = FMA(KP707106781, Tja, Tj9);
						  {
						       E Ti7, Tji, Tjk, Ti3;
						       Ti7 = Ti5 + Ti6;
						       Tji = Ti6 - Ti5;
						       Tjk = ThR + Ti2;
						       Ti3 = ThR - Ti2;
						       ri[WS(rs, 4)] = FMA(KP923879532, Tij, Tic);
						       ri[WS(rs, 36)] = FNMS(KP923879532, Tij, Tic);
						       ri[WS(rs, 60)] = FMA(KP923879532, Ti7, Ti4);
						       ri[WS(rs, 28)] = FNMS(KP923879532, Ti7, Ti4);
						       ii[WS(rs, 44)] = FNMS(KP923879532, Tji, Tjh);
						       ii[WS(rs, 12)] = FMA(KP923879532, Tji, Tjh);
						       ii[WS(rs, 60)] = FMA(KP923879532, Tjk, Tjj);
						       ii[WS(rs, 28)] = FNMS(KP923879532, Tjk, Tjj);
						       ri[WS(rs, 12)] = FMA(KP923879532, Ti3, ThG);
						       ri[WS(rs, 44)] = FNMS(KP923879532, Ti3, ThG);
						       Tjc = Til + Tim;
						       Tin = Til - Tim;
						  }
					     }
					     ii[WS(rs, 36)] = FNMS(KP923879532, Tjc, Tjb);
					     ii[WS(rs, 4)] = FMA(KP923879532, Tjc, Tjb);
					     ri[WS(rs, 20)] = FMA(KP923879532, Tin, Tik);
					     ri[WS(rs, 52)] = FNMS(KP923879532, Tin, Tik);
					}
				   }
			      }
			 }
			 {
			      E TjD, TjJ, Tgo, Tf2, Tjp, Tjv, Tha, TgI, Tgd, Tgr, Tjw, Tjq, Tfp, Tgg, Thk;
			      E Tho, Th8, Th4, Tgv, TgB, Tgl, TfR, TjE, Thd, TjK, TgP, Tgx, Tg8, Thh, Thn;
			      E Th7, TgX;
			      {
				   E TgJ, TgK, TgM, TgN, Tg7, TfW, Th1, Thj, Th0, Th2;
				   {
					E TgE, TeQ, TjB, Tjn, TgF, TgG, TjC, Tf1, TeV, Tf0;
					TgE = TeM - TeP;
					TeQ = TeM + TeP;
					TjB = Tjm - Tjl;
					Tjn = Tjl + Tjm;
					TgF = TeU - TeR;
					TeV = TeR + TeU;
					ii[WS(rs, 52)] = FNMS(KP923879532, Tje, Tjd);
					ii[WS(rs, 20)] = FMA(KP923879532, Tje, Tjd);
					Tf0 = TeW - TeZ;
					TgG = TeW + TeZ;
					TjC = Tf0 - TeV;
					Tf1 = TeV + Tf0;
					{
					     E Tfi, Tgp, Tfd, Tfn;
					     {
						  E Tf7, Tjo, TgH, Tfc;
						  TgJ = Tf5 - Tf6;
						  Tf7 = Tf5 + Tf6;
						  TjD = FMA(KP707106781, TjC, TjB);
						  TjJ = FNMS(KP707106781, TjC, TjB);
						  Tgo = FMA(KP707106781, Tf1, TeQ);
						  Tf2 = FNMS(KP707106781, Tf1, TeQ);
						  Tjo = TgF + TgG;
						  TgH = TgF - TgG;
						  Tfc = Tf8 + Tfb;
						  TgK = Tf8 - Tfb;
						  TgM = Tfg - Tfh;
						  Tfi = Tfg + Tfh;
						  Tjp = FMA(KP707106781, Tjo, Tjn);
						  Tjv = FNMS(KP707106781, Tjo, Tjn);
						  Tha = FNMS(KP707106781, TgH, TgE);
						  TgI = FMA(KP707106781, TgH, TgE);
						  Tgp = FMA(KP414213562, Tf7, Tfc);
						  Tfd = FNMS(KP414213562, Tfc, Tf7);
						  Tfn = Tfj + Tfm;
						  TgN = Tfj - Tfm;
					     }
					     {
						  E TgY, TgZ, Tgq, Tfo;
						  Tgd = Tg9 + Tgc;
						  TgY = Tg9 - Tgc;
						  TgZ = Tg6 - Tg1;
						  Tg7 = Tg1 + Tg6;
						  TfW = TfU + TfV;
						  Th1 = TfU - TfV;
						  Tgq = FNMS(KP414213562, Tfi, Tfn);
						  Tfo = FMA(KP414213562, Tfn, Tfi);
						  Thj = FMA(KP707106781, TgZ, TgY);
						  Th0 = FNMS(KP707106781, TgZ, TgY);
						  Tgr = Tgp + Tgq;
						  Tjw = Tgq - Tgp;
						  Tjq = Tfd + Tfo;
						  Tfp = Tfd - Tfo;
						  Th2 = Tge - Tgf;
						  Tgg = Tge + Tgf;
					     }
					}
				   }
				   {
					E TgU, TgS, TgR, TgV, Thb, TgL;
					{
					     E TfM, Tgu, TfH, TfP, Tgt, TfQ;
					     {
						  E Tfv, TfG, Thi, Th3;
						  TgU = Tft - Tfu;
						  Tfv = Tft + Tfu;
						  TfG = TfA + TfF;
						  TgS = TfF - TfA;
						  TgR = TfI - TfL;
						  TfM = TfI + TfL;
						  Thi = FMA(KP707106781, Th2, Th1);
						  Th3 = FNMS(KP707106781, Th2, Th1);
						  Tgu = FMA(KP707106781, TfG, Tfv);
						  TfH = FNMS(KP707106781, TfG, Tfv);
						  Thk = FNMS(KP198912367, Thj, Thi);
						  Tho = FMA(KP198912367, Thi, Thj);
						  Th8 = FMA(KP668178637, Th0, Th3);
						  Th4 = FNMS(KP668178637, Th3, Th0);
						  TfP = TfN + TfO;
						  TgV = TfN - TfO;
					     }
					     Tgt = FMA(KP707106781, TfP, TfM);
					     TfQ = FNMS(KP707106781, TfP, TfM);
					     Thb = FNMS(KP414213562, TgJ, TgK);
					     TgL = FMA(KP414213562, TgK, TgJ);
					     Tgv = FMA(KP198912367, Tgu, Tgt);
					     TgB = FNMS(KP198912367, Tgt, Tgu);
					     Tgl = FNMS(KP668178637, TfH, TfQ);
					     TfR = FMA(KP668178637, TfQ, TfH);
					}
					{
					     E Thg, TgT, Thc, TgO, Thf, TgW;
					     Thc = FMA(KP414213562, TgM, TgN);
					     TgO = FNMS(KP414213562, TgN, TgM);
					     Thg = FMA(KP707106781, TgS, TgR);
					     TgT = FNMS(KP707106781, TgS, TgR);
					     TjE = Thc - Thb;
					     Thd = Thb + Thc;
					     TjK = TgL + TgO;
					     TgP = TgL - TgO;
					     Thf = FMA(KP707106781, TgV, TgU);
					     TgW = FNMS(KP707106781, TgV, TgU);
					     Tgx = FMA(KP707106781, Tg7, TfW);
					     Tg8 = FNMS(KP707106781, Tg7, TfW);
					     Thh = FMA(KP198912367, Thg, Thf);
					     Thn = FNMS(KP198912367, Thf, Thg);
					     Th7 = FNMS(KP668178637, TgT, TgW);
					     TgX = FMA(KP668178637, TgW, TgT);
					}
				   }
			      }
			      {
				   E Tju, Tjt, TjI, TjH;
				   {
					E Tgk, Tfq, Tjx, Tjz, Tgw, Tgh;
					Tgk = FNMS(KP923879532, Tfp, Tf2);
					Tfq = FMA(KP923879532, Tfp, Tf2);
					Tjx = FMA(KP923879532, Tjw, Tjv);
					Tjz = FNMS(KP923879532, Tjw, Tjv);
					Tgw = FMA(KP707106781, Tgg, Tgd);
					Tgh = FNMS(KP707106781, Tgg, Tgd);
					{
					     E TgA, Tjr, Tjs, TgD;
					     {
						  E Tgs, TgC, Tgm, Tgi, Tgz, Tgy;
						  TgA = FNMS(KP923879532, Tgr, Tgo);
						  Tgs = FMA(KP923879532, Tgr, Tgo);
						  Tgy = FNMS(KP198912367, Tgx, Tgw);
						  TgC = FMA(KP198912367, Tgw, Tgx);
						  Tgm = FMA(KP668178637, Tg8, Tgh);
						  Tgi = FNMS(KP668178637, Tgh, Tg8);
						  Tgz = Tgv + Tgy;
						  Tju = Tgy - Tgv;
						  Tjt = FNMS(KP923879532, Tjq, Tjp);
						  Tjr = FMA(KP923879532, Tjq, Tjp);
						  {
						       E Tgn, Tjy, TjA, Tgj;
						       Tgn = Tgl + Tgm;
						       Tjy = Tgm - Tgl;
						       TjA = TfR + Tgi;
						       Tgj = TfR - Tgi;
						       ri[WS(rs, 2)] = FMA(KP980785280, Tgz, Tgs);
						       ri[WS(rs, 34)] = FNMS(KP980785280, Tgz, Tgs);
						       ri[WS(rs, 58)] = FMA(KP831469612, Tgn, Tgk);
						       ri[WS(rs, 26)] = FNMS(KP831469612, Tgn, Tgk);
						       ii[WS(rs, 42)] = FNMS(KP831469612, Tjy, Tjx);
						       ii[WS(rs, 10)] = FMA(KP831469612, Tjy, Tjx);
						       ii[WS(rs, 58)] = FMA(KP831469612, TjA, Tjz);
						       ii[WS(rs, 26)] = FNMS(KP831469612, TjA, Tjz);
						       ri[WS(rs, 10)] = FMA(KP831469612, Tgj, Tfq);
						       ri[WS(rs, 42)] = FNMS(KP831469612, Tgj, Tfq);
						       Tjs = TgB + TgC;
						       TgD = TgB - TgC;
						  }
					     }
					     ii[WS(rs, 34)] = FNMS(KP980785280, Tjs, Tjr);
					     ii[WS(rs, 2)] = FMA(KP980785280, Tjs, Tjr);
					     ri[WS(rs, 18)] = FMA(KP980785280, TgD, TgA);
					     ri[WS(rs, 50)] = FNMS(KP980785280, TgD, TgA);
					}
				   }
				   {
					E Th6, TjF, TjG, Th9, TgQ, Th5;
					Th6 = FNMS(KP923879532, TgP, TgI);
					TgQ = FMA(KP923879532, TgP, TgI);
					Th5 = TgX + Th4;
					TjI = Th4 - TgX;
					TjH = FNMS(KP923879532, TjE, TjD);
					TjF = FMA(KP923879532, TjE, TjD);
					ii[WS(rs, 50)] = FNMS(KP980785280, Tju, Tjt);
					ii[WS(rs, 18)] = FMA(KP980785280, Tju, Tjt);
					ri[WS(rs, 6)] = FMA(KP831469612, Th5, TgQ);
					ri[WS(rs, 38)] = FNMS(KP831469612, Th5, TgQ);
					TjG = Th7 + Th8;
					Th9 = Th7 - Th8;
					ii[WS(rs, 38)] = FNMS(KP831469612, TjG, TjF);
					ii[WS(rs, 6)] = FMA(KP831469612, TjG, TjF);
					ri[WS(rs, 22)] = FMA(KP831469612, Th9, Th6);
					ri[WS(rs, 54)] = FNMS(KP831469612, Th9, Th6);
				   }
				   {
					E Thm, TjL, TjM, Thp, The, Thl;
					Thm = FMA(KP923879532, Thd, Tha);
					The = FNMS(KP923879532, Thd, Tha);
					Thl = Thh - Thk;
					TjO = Thh + Thk;
					TjN = FMA(KP923879532, TjK, TjJ);
					TjL = FNMS(KP923879532, TjK, TjJ);
					ii[WS(rs, 54)] = FNMS(KP831469612, TjI, TjH);
					ii[WS(rs, 22)] = FMA(KP831469612, TjI, TjH);
					ri[WS(rs, 14)] = FMA(KP980785280, Thl, The);
					ri[WS(rs, 46)] = FNMS(KP980785280, Thl, The);
					TjM = Tho - Thn;
					Thp = Thn + Tho;
					ii[WS(rs, 46)] = FNMS(KP980785280, TjM, TjL);
					ii[WS(rs, 14)] = FMA(KP980785280, TjM, TjL);
					ri[WS(rs, 62)] = FMA(KP980785280, Thp, Thm);
					ri[WS(rs, 30)] = FNMS(KP980785280, Thp, Thm);
				   }
			      }
			 }
			 {
			      E TjS, TcD, Tcw, TkO, TkN, Tcz;
			      {
				   E TbB, Tkw, Tkq, T99, TbF, TbL, Tbv, Taj, Tcu, Tcy, Tci, Tce, Tcr, Tcx, Tch;
				   E Tc7, TkE, Tcn, TkK, TbZ, TbP, T7J, TbO, T7u, TkB, Tkn, TbI, TbM, Tbw, Tbs;
				   E T7Y, TbQ;
				   {
					E TbT, TbU, TbW, TbX, Tc4, Tc2, Tc1, Tc5, Tbn, Tbb, TaG, Tcb, Tct, Tca, Tcc;
					E Tbq, Tcl, TbV;
					{
					     E T8W, Tbz, T8z, T97, T8n, T8y;
					     TbT = FMA(KP707106781, T8m, T87);
					     T8n = FNMS(KP707106781, T8m, T87);
					     T8y = FNMS(KP707106781, T8x, T8u);
					     TbU = FMA(KP707106781, T8x, T8u);
					     TbW = FMA(KP707106781, T8V, T8G);
					     T8W = FNMS(KP707106781, T8V, T8G);
					     ii[WS(rs, 62)] = FMA(KP980785280, TjO, TjN);
					     ii[WS(rs, 30)] = FNMS(KP980785280, TjO, TjN);
					     Tbz = FMA(KP668178637, T8n, T8y);
					     T8z = FNMS(KP668178637, T8y, T8n);
					     T97 = FNMS(KP707106781, T96, T93);
					     TbX = FMA(KP707106781, T96, T93);
					     {
						  E Tae, TbE, Ta3, Tah;
						  {
						       E T9x, Ta2, TbA, T98;
						       Tc4 = FMA(KP707106781, T9w, T9h);
						       T9x = FNMS(KP707106781, T9w, T9h);
						       Ta2 = T9M - Ta1;
						       Tc2 = Ta1 + T9M;
						       Tc1 = FMA(KP707106781, Tad, Taa);
						       Tae = FNMS(KP707106781, Tad, Taa);
						       TbA = FNMS(KP668178637, T8W, T97);
						       T98 = FMA(KP668178637, T97, T8W);
						       TbE = FMA(KP923879532, Ta2, T9x);
						       Ta3 = FNMS(KP923879532, Ta2, T9x);
						       TbB = Tbz + TbA;
						       Tkw = TbA - Tbz;
						       Tkq = T8z + T98;
						       T99 = T8z - T98;
						       Tah = Taf - Tag;
						       Tc5 = Taf + Tag;
						  }
						  {
						       E Tc8, Tc9, TbD, Tai;
						       Tbn = FNMS(KP707106781, Tbm, Tbj);
						       Tc8 = FMA(KP707106781, Tbm, Tbj);
						       Tc9 = Tba + TaV;
						       Tbb = TaV - Tba;
						       TaG = FNMS(KP707106781, TaF, Taq);
						       Tcb = FMA(KP707106781, TaF, Taq);
						       TbD = FMA(KP923879532, Tah, Tae);
						       Tai = FNMS(KP923879532, Tah, Tae);
						       Tct = FMA(KP923879532, Tc9, Tc8);
						       Tca = FNMS(KP923879532, Tc9, Tc8);
						       TbF = FMA(KP303346683, TbE, TbD);
						       TbL = FNMS(KP303346683, TbD, TbE);
						       Tbv = FNMS(KP534511135, Ta3, Tai);
						       Taj = FMA(KP534511135, Tai, Ta3);
						       Tcc = Tbo + Tbp;
						       Tbq = Tbo - Tbp;
						  }
					     }
					}
					{
					     E Tcq, Tc3, Tcs, Tcd, Tcp, Tc6;
					     Tcs = FMA(KP923879532, Tcc, Tcb);
					     Tcd = FNMS(KP923879532, Tcc, Tcb);
					     Tcq = FMA(KP923879532, Tc2, Tc1);
					     Tc3 = FNMS(KP923879532, Tc2, Tc1);
					     Tcu = FNMS(KP098491403, Tct, Tcs);
					     Tcy = FMA(KP098491403, Tcs, Tct);
					     Tci = FMA(KP820678790, Tca, Tcd);
					     Tce = FNMS(KP820678790, Tcd, Tca);
					     Tcp = FMA(KP923879532, Tc5, Tc4);
					     Tc6 = FNMS(KP923879532, Tc5, Tc4);
					     Tcl = FNMS(KP198912367, TbT, TbU);
					     TbV = FMA(KP198912367, TbU, TbT);
					     Tcr = FMA(KP098491403, Tcq, Tcp);
					     Tcx = FNMS(KP098491403, Tcp, Tcq);
					     Tch = FNMS(KP820678790, Tc3, Tc6);
					     Tc7 = FMA(KP820678790, Tc6, Tc3);
					}
					{
					     E TbH, Tbc, Tcm, TbY;
					     Tcm = FMA(KP198912367, TbW, TbX);
					     TbY = FNMS(KP198912367, TbX, TbW);
					     TbH = FMA(KP923879532, Tbb, TaG);
					     Tbc = FNMS(KP923879532, Tbb, TaG);
					     TkE = Tcm - Tcl;
					     Tcn = Tcl + Tcm;
					     TkK = TbV + TbY;
					     TbZ = TbV - TbY;
					     {
						  E T7t, Tkm, TbG, Tbr;
						  TjS = T7l + T7s;
						  T7t = T7l - T7s;
						  Tkm = TcC - TcB;
						  TcD = TcB + TcC;
						  TbP = FNMS(KP414213562, T7B, T7I);
						  T7J = FMA(KP414213562, T7I, T7B);
						  TbG = FMA(KP923879532, Tbq, Tbn);
						  Tbr = FNMS(KP923879532, Tbq, Tbn);
						  TbO = FNMS(KP707106781, T7t, T7e);
						  T7u = FMA(KP707106781, T7t, T7e);
						  TkB = FNMS(KP707106781, Tkm, Tkl);
						  Tkn = FMA(KP707106781, Tkm, Tkl);
						  TbI = FNMS(KP303346683, TbH, TbG);
						  TbM = FMA(KP303346683, TbG, TbH);
						  Tbw = FMA(KP534511135, Tbc, Tbr);
						  Tbs = FNMS(KP534511135, Tbr, Tbc);
						  T7Y = FNMS(KP414213562, T7X, T7Q);
						  TbQ = FMA(KP414213562, T7Q, T7X);
					     }
					}
				   }
				   {
					E TkJ, TkD, Tck, TbS, TbK, Tku, Tkt, TbN;
					{
					     E TkA, Tby, Tkp, Tbu, Tkz, Tbx;
					     {
						  E Tbt, T9a, Tkx, Tky, Tkv;
						  TkA = Taj + Tbs;
						  Tbt = Taj - Tbs;
						  {
						       E TkC, T7Z, Tko, TbR, T80;
						       TkC = T7J + T7Y;
						       T7Z = T7J - T7Y;
						       Tko = TbQ - TbP;
						       TbR = TbP + TbQ;
						       TkJ = FMA(KP923879532, TkC, TkB);
						       TkD = FNMS(KP923879532, TkC, TkB);
						       Tby = FMA(KP923879532, T7Z, T7u);
						       T80 = FNMS(KP923879532, T7Z, T7u);
						       Tkv = FNMS(KP923879532, Tko, Tkn);
						       Tkp = FMA(KP923879532, Tko, Tkn);
						       Tck = FMA(KP923879532, TbR, TbO);
						       TbS = FNMS(KP923879532, TbR, TbO);
						       T9a = FMA(KP831469612, T99, T80);
						       Tbu = FNMS(KP831469612, T99, T80);
						  }
						  Tkz = FNMS(KP831469612, Tkw, Tkv);
						  Tkx = FMA(KP831469612, Tkw, Tkv);
						  Tky = Tbw - Tbv;
						  Tbx = Tbv + Tbw;
						  ri[WS(rs, 11)] = FMA(KP881921264, Tbt, T9a);
						  ri[WS(rs, 43)] = FNMS(KP881921264, Tbt, T9a);
						  ii[WS(rs, 43)] = FNMS(KP881921264, Tky, Tkx);
						  ii[WS(rs, 11)] = FMA(KP881921264, Tky, Tkx);
					     }
					     {
						  E TbC, TbJ, Tkr, Tks;
						  TbK = FNMS(KP831469612, TbB, Tby);
						  TbC = FMA(KP831469612, TbB, Tby);
						  ri[WS(rs, 59)] = FMA(KP881921264, Tbx, Tbu);
						  ri[WS(rs, 27)] = FNMS(KP881921264, Tbx, Tbu);
						  ii[WS(rs, 59)] = FMA(KP881921264, TkA, Tkz);
						  ii[WS(rs, 27)] = FNMS(KP881921264, TkA, Tkz);
						  TbJ = TbF + TbI;
						  Tku = TbI - TbF;
						  Tkt = FNMS(KP831469612, Tkq, Tkp);
						  Tkr = FMA(KP831469612, Tkq, Tkp);
						  Tks = TbL + TbM;
						  TbN = TbL - TbM;
						  ri[WS(rs, 3)] = FMA(KP956940335, TbJ, TbC);
						  ri[WS(rs, 35)] = FNMS(KP956940335, TbJ, TbC);
						  ii[WS(rs, 35)] = FNMS(KP956940335, Tks, Tkr);
						  ii[WS(rs, 3)] = FMA(KP956940335, Tks, Tkr);
					     }
					}
					{
					     E Tcg, TkI, TkH, Tcj;
					     {
						  E Tc0, Tcf, TkF, TkG;
						  Tcg = FNMS(KP980785280, TbZ, TbS);
						  Tc0 = FMA(KP980785280, TbZ, TbS);
						  ri[WS(rs, 19)] = FMA(KP956940335, TbN, TbK);
						  ri[WS(rs, 51)] = FNMS(KP956940335, TbN, TbK);
						  ii[WS(rs, 51)] = FNMS(KP956940335, Tku, Tkt);
						  ii[WS(rs, 19)] = FMA(KP956940335, Tku, Tkt);
						  Tcf = Tc7 + Tce;
						  TkI = Tce - Tc7;
						  TkH = FNMS(KP980785280, TkE, TkD);
						  TkF = FMA(KP980785280, TkE, TkD);
						  TkG = Tch + Tci;
						  Tcj = Tch - Tci;
						  ri[WS(rs, 7)] = FMA(KP773010453, Tcf, Tc0);
						  ri[WS(rs, 39)] = FNMS(KP773010453, Tcf, Tc0);
						  ii[WS(rs, 39)] = FNMS(KP773010453, TkG, TkF);
						  ii[WS(rs, 7)] = FMA(KP773010453, TkG, TkF);
					     }
					     {
						  E Tco, Tcv, TkL, TkM;
						  Tcw = FMA(KP980785280, Tcn, Tck);
						  Tco = FNMS(KP980785280, Tcn, Tck);
						  ri[WS(rs, 23)] = FMA(KP773010453, Tcj, Tcg);
						  ri[WS(rs, 55)] = FNMS(KP773010453, Tcj, Tcg);
						  ii[WS(rs, 55)] = FNMS(KP773010453, TkI, TkH);
						  ii[WS(rs, 23)] = FMA(KP773010453, TkI, TkH);
						  Tcv = Tcr - Tcu;
						  TkO = Tcr + Tcu;
						  TkN = FMA(KP980785280, TkK, TkJ);
						  TkL = FNMS(KP980785280, TkK, TkJ);
						  TkM = Tcy - Tcx;
						  Tcz = Tcx + Tcy;
						  ri[WS(rs, 15)] = FMA(KP995184726, Tcv, Tco);
						  ri[WS(rs, 47)] = FNMS(KP995184726, Tcv, Tco);
						  ii[WS(rs, 47)] = FNMS(KP995184726, TkM, TkL);
						  ii[WS(rs, 15)] = FMA(KP995184726, TkM, TkL);
					     }
					}
				   }
			      }
			      {
				   E TdN, Tk2, TjW, Td1, TdR, TdX, TdH, Tdl, TeG, TeK, Teu, Teq, TeD, TeJ, Tet;
				   E Tej, Tka, Tez, Tkg, Teb, Te1, TcH, Te0, TcE, Tk7, TjT, TdU, TdY, TdI, TdE;
				   E TcK, Te2;
				   {
					E Te5, Te6, Te8, Te9, Teg, Tee, Ted, Teh, Tdz, Tdv, Tdo, Ten, TeF, Tem, Teo;
					E TdC, Tex, Te7;
					{
					     E TcP, TcS, TcW, TcZ;
					     Te5 = FNMS(KP707106781, TcO, TcN);
					     TcP = FMA(KP707106781, TcO, TcN);
					     ri[WS(rs, 63)] = FMA(KP995184726, Tcz, Tcw);
					     ri[WS(rs, 31)] = FNMS(KP995184726, Tcz, Tcw);
					     ii[WS(rs, 63)] = FMA(KP995184726, TkO, TkN);
					     ii[WS(rs, 31)] = FNMS(KP995184726, TkO, TkN);
					     TcS = FMA(KP707106781, TcR, TcQ);
					     Te6 = FNMS(KP707106781, TcR, TcQ);
					     Te8 = FNMS(KP707106781, TcV, TcU);
					     TcW = FMA(KP707106781, TcV, TcU);
					     TcZ = FMA(KP707106781, TcY, TcX);
					     Te9 = FNMS(KP707106781, TcY, TcX);
					     {
						  E Tdg, TdQ, Tdd, Tdj;
						  {
						       E Td5, TdL, TcT, TdM, Td0, Tdc;
						       Teg = FNMS(KP707106781, Td4, Td3);
						       Td5 = FMA(KP707106781, Td4, Td3);
						       TdL = FMA(KP198912367, TcP, TcS);
						       TcT = FNMS(KP198912367, TcS, TcP);
						       TdM = FNMS(KP198912367, TcW, TcZ);
						       Td0 = FMA(KP198912367, TcZ, TcW);
						       Tdc = Td8 + Tdb;
						       Tee = Tdb - Td8;
						       Ted = FNMS(KP707106781, Tdf, Tde);
						       Tdg = FMA(KP707106781, Tdf, Tde);
						       TdN = TdL + TdM;
						       Tk2 = TdM - TdL;
						       TjW = TcT + Td0;
						       Td1 = TcT - Td0;
						       TdQ = FMA(KP923879532, Tdc, Td5);
						       Tdd = FNMS(KP923879532, Tdc, Td5);
						       Tdj = Tdh + Tdi;
						       Teh = Tdh - Tdi;
						  }
						  {
						       E Tek, Tel, TdP, Tdk;
						       Tdz = FMA(KP707106781, Tdy, Tdx);
						       Tek = FNMS(KP707106781, Tdy, Tdx);
						       Tel = Tdu - Tdr;
						       Tdv = Tdr + Tdu;
						       Tdo = FMA(KP707106781, Tdn, Tdm);
						       Ten = FNMS(KP707106781, Tdn, Tdm);
						       TdP = FMA(KP923879532, Tdj, Tdg);
						       Tdk = FNMS(KP923879532, Tdj, Tdg);
						       TeF = FMA(KP923879532, Tel, Tek);
						       Tem = FNMS(KP923879532, Tel, Tek);
						       TdR = FMA(KP098491403, TdQ, TdP);
						       TdX = FNMS(KP098491403, TdP, TdQ);
						       TdH = FNMS(KP820678790, Tdd, Tdk);
						       Tdl = FMA(KP820678790, Tdk, Tdd);
						       Teo = TdA - TdB;
						       TdC = TdA + TdB;
						  }
					     }
					}
					{
					     E TeC, Tef, TeE, Tep, TeB, Tei;
					     TeE = FMA(KP923879532, Teo, Ten);
					     Tep = FNMS(KP923879532, Teo, Ten);
					     TeC = FMA(KP923879532, Tee, Ted);
					     Tef = FNMS(KP923879532, Tee, Ted);
					     TeG = FNMS(KP303346683, TeF, TeE);
					     TeK = FMA(KP303346683, TeE, TeF);
					     Teu = FMA(KP534511135, Tem, Tep);
					     Teq = FNMS(KP534511135, Tep, Tem);
					     TeB = FMA(KP923879532, Teh, Teg);
					     Tei = FNMS(KP923879532, Teh, Teg);
					     Tex = FNMS(KP668178637, Te5, Te6);
					     Te7 = FMA(KP668178637, Te6, Te5);
					     TeD = FMA(KP303346683, TeC, TeB);
					     TeJ = FNMS(KP303346683, TeB, TeC);
					     Tet = FNMS(KP534511135, Tef, Tei);
					     Tej = FMA(KP534511135, Tei, Tef);
					}
					{
					     E TdT, Tdw, Tey, Tea, TdS, TdD;
					     Tey = FMA(KP668178637, Te8, Te9);
					     Tea = FNMS(KP668178637, Te9, Te8);
					     TdT = FMA(KP923879532, Tdv, Tdo);
					     Tdw = FNMS(KP923879532, Tdv, Tdo);
					     Tka = Tey - Tex;
					     Tez = Tex + Tey;
					     Tkg = Te7 + Tea;
					     Teb = Te7 - Tea;
					     Te1 = FNMS(KP414213562, TcF, TcG);
					     TcH = FMA(KP414213562, TcG, TcF);
					     TdS = FMA(KP923879532, TdC, Tdz);
					     TdD = FNMS(KP923879532, TdC, Tdz);
					     Te0 = FNMS(KP707106781, TcD, TcA);
					     TcE = FMA(KP707106781, TcD, TcA);
					     Tk7 = FNMS(KP707106781, TjS, TjR);
					     TjT = FMA(KP707106781, TjS, TjR);
					     TdU = FNMS(KP098491403, TdT, TdS);
					     TdY = FMA(KP098491403, TdS, TdT);
					     TdI = FMA(KP820678790, Tdw, TdD);
					     TdE = FNMS(KP820678790, TdD, Tdw);
					     TcK = FNMS(KP414213562, TcJ, TcI);
					     Te2 = FMA(KP414213562, TcI, TcJ);
					}
				   }
				   {
					E Tkf, Tk9, Tew, Te4, TdW, Tk0, TjZ, TdZ;
					{
					     E Tk6, TdK, TjV, TdG, Tk5, TdJ;
					     {
						  E TdF, Td2, Tk3, Tk4, Tk1;
						  Tk6 = Tdl + TdE;
						  TdF = Tdl - TdE;
						  {
						       E Tk8, TcL, TjU, Te3, TcM;
						       Tk8 = TcK - TcH;
						       TcL = TcH + TcK;
						       TjU = Te1 + Te2;
						       Te3 = Te1 - Te2;
						       Tkf = FNMS(KP923879532, Tk8, Tk7);
						       Tk9 = FMA(KP923879532, Tk8, Tk7);
						       TdK = FMA(KP923879532, TcL, TcE);
						       TcM = FNMS(KP923879532, TcL, TcE);
						       Tk1 = FNMS(KP923879532, TjU, TjT);
						       TjV = FMA(KP923879532, TjU, TjT);
						       Tew = FNMS(KP923879532, Te3, Te0);
						       Te4 = FMA(KP923879532, Te3, Te0);
						       Td2 = FMA(KP980785280, Td1, TcM);
						       TdG = FNMS(KP980785280, Td1, TcM);
						  }
						  Tk5 = FNMS(KP980785280, Tk2, Tk1);
						  Tk3 = FMA(KP980785280, Tk2, Tk1);
						  Tk4 = TdI - TdH;
						  TdJ = TdH + TdI;
						  ri[WS(rs, 9)] = FMA(KP773010453, TdF, Td2);
						  ri[WS(rs, 41)] = FNMS(KP773010453, TdF, Td2);
						  ii[WS(rs, 41)] = FNMS(KP773010453, Tk4, Tk3);
						  ii[WS(rs, 9)] = FMA(KP773010453, Tk4, Tk3);
					     }
					     {
						  E TdO, TdV, TjX, TjY;
						  TdW = FNMS(KP980785280, TdN, TdK);
						  TdO = FMA(KP980785280, TdN, TdK);
						  ri[WS(rs, 57)] = FMA(KP773010453, TdJ, TdG);
						  ri[WS(rs, 25)] = FNMS(KP773010453, TdJ, TdG);
						  ii[WS(rs, 57)] = FMA(KP773010453, Tk6, Tk5);
						  ii[WS(rs, 25)] = FNMS(KP773010453, Tk6, Tk5);
						  TdV = TdR + TdU;
						  Tk0 = TdU - TdR;
						  TjZ = FNMS(KP980785280, TjW, TjV);
						  TjX = FMA(KP980785280, TjW, TjV);
						  TjY = TdX + TdY;
						  TdZ = TdX - TdY;
						  ri[WS(rs, 1)] = FMA(KP995184726, TdV, TdO);
						  ri[WS(rs, 33)] = FNMS(KP995184726, TdV, TdO);
						  ii[WS(rs, 33)] = FNMS(KP995184726, TjY, TjX);
						  ii[WS(rs, 1)] = FMA(KP995184726, TjY, TjX);
					     }
					}
					{
					     E Tes, Tke, Tkd, Tev;
					     {
						  E Tec, Ter, Tkb, Tkc;
						  Tes = FNMS(KP831469612, Teb, Te4);
						  Tec = FMA(KP831469612, Teb, Te4);
						  ri[WS(rs, 17)] = FMA(KP995184726, TdZ, TdW);
						  ri[WS(rs, 49)] = FNMS(KP995184726, TdZ, TdW);
						  ii[WS(rs, 49)] = FNMS(KP995184726, Tk0, TjZ);
						  ii[WS(rs, 17)] = FMA(KP995184726, Tk0, TjZ);
						  Ter = Tej + Teq;
						  Tke = Teq - Tej;
						  Tkd = FNMS(KP831469612, Tka, Tk9);
						  Tkb = FMA(KP831469612, Tka, Tk9);
						  Tkc = Tet + Teu;
						  Tev = Tet - Teu;
						  ri[WS(rs, 5)] = FMA(KP881921264, Ter, Tec);
						  ri[WS(rs, 37)] = FNMS(KP881921264, Ter, Tec);
						  ii[WS(rs, 37)] = FNMS(KP881921264, Tkc, Tkb);
						  ii[WS(rs, 5)] = FMA(KP881921264, Tkc, Tkb);
					     }
					     {
						  E TeA, TeH, Tkh, Tki;
						  TeI = FMA(KP831469612, Tez, Tew);
						  TeA = FNMS(KP831469612, Tez, Tew);
						  ri[WS(rs, 21)] = FMA(KP881921264, Tev, Tes);
						  ri[WS(rs, 53)] = FNMS(KP881921264, Tev, Tes);
						  ii[WS(rs, 53)] = FNMS(KP881921264, Tke, Tkd);
						  ii[WS(rs, 21)] = FMA(KP881921264, Tke, Tkd);
						  TeH = TeD - TeG;
						  Tkk = TeD + TeG;
						  Tkj = FMA(KP831469612, Tkg, Tkf);
						  Tkh = FNMS(KP831469612, Tkg, Tkf);
						  Tki = TeK - TeJ;
						  TeL = TeJ + TeK;
						  ri[WS(rs, 13)] = FMA(KP956940335, TeH, TeA);
						  ri[WS(rs, 45)] = FNMS(KP956940335, TeH, TeA);
						  ii[WS(rs, 45)] = FNMS(KP956940335, Tki, Tkh);
						  ii[WS(rs, 13)] = FMA(KP956940335, Tki, Tkh);
					     }
					}
				   }
			      }
			 }
		    }
	       }
	       ri[WS(rs, 61)] = FMA(KP956940335, TeL, TeI);
	       ri[WS(rs, 29)] = FNMS(KP956940335, TeL, TeI);
	       ii[WS(rs, 61)] = FMA(KP956940335, Tkk, Tkj);
	       ii[WS(rs, 29)] = FNMS(KP956940335, Tkk, Tkj);
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 0, 64},
     {TW_NEXT, 1, 0}
};

static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, {520, 126, 518, 0}, 0, 0, 0 };

void X(codelet_t1_64) (planner *p) {
     X(kdft_dit_register) (p, t1_64, &desc);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include t.h */

/*
 * This function contains 1038 FP additions, 500 FP multiplications,
 * (or, 808 additions, 270 multiplications, 230 fused multiply/add),
 * 176 stack variables, 15 constants, and 256 memory accesses
 */
#include "t.h"

static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP471396736, +0.471396736825997648556387625905254377657460319);
     DK(KP881921264, +0.881921264348355029712756863660388349508442621);
     DK(KP290284677, +0.290284677254462367636192375817395274691476278);
     DK(KP956940335, +0.956940335732208864935797886980269969482849206);
     DK(KP634393284, +0.634393284163645498215171613225493370675687095);
     DK(KP773010453, +0.773010453362736960810906609758469800971041293);
     DK(KP098017140, +0.098017140329560601994195563888641845861136673);
     DK(KP995184726, +0.995184726672196886244836953109479921575474869);
     DK(KP555570233, +0.555570233019602224742830813948532874374937191);
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
     DK(KP195090322, +0.195090322016128267848284868477022240927691618);
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     {
	  INT m;
	  for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
	       E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC;
	       E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1;
	       E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a;
	       E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM;
	       E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D;
	       E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt;
	       E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO;
	       E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted;
	       E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA;
	       {
		    E T1, TgR, T6, TgQ, Tc, T68, Th, T69;
		    T1 = ri[0];
		    TgR = ii[0];
		    {
			 E T3, T5, T2, T4;
			 T3 = ri[WS(rs, 32)];
			 T5 = ii[WS(rs, 32)];
			 T2 = W[62];
			 T4 = W[63];
			 T6 = FMA(T2, T3, T4 * T5);
			 TgQ = FNMS(T4, T3, T2 * T5);
		    }
		    {
			 E T9, Tb, T8, Ta;
			 T9 = ri[WS(rs, 16)];
			 Tb = ii[WS(rs, 16)];
			 T8 = W[30];
			 Ta = W[31];
			 Tc = FMA(T8, T9, Ta * Tb);
			 T68 = FNMS(Ta, T9, T8 * Tb);
		    }
		    {
			 E Te, Tg, Td, Tf;
			 Te = ri[WS(rs, 48)];
			 Tg = ii[WS(rs, 48)];
			 Td = W[94];
			 Tf = W[95];
			 Th = FMA(Td, Te, Tf * Tg);
			 T69 = FNMS(Tf, Te, Td * Tg);
		    }
		    {
			 E T7, Ti, ThR, ThS;
			 T7 = T1 + T6;
			 Ti = Tc + Th;
			 Tj = T7 + Ti;
			 TcL = T7 - Ti;
			 ThR = TgR - TgQ;
			 ThS = Tc - Th;
			 ThT = ThR - ThS;
			 Tin = ThS + ThR;
		    }
		    {
			 E T67, T6a, TgP, TgS;
			 T67 = T1 - T6;
			 T6a = T68 - T69;
			 T6b = T67 - T6a;
			 Taz = T67 + T6a;
			 TgP = T68 + T69;
			 TgS = TgQ + TgR;
			 TgT = TgP + TgS;
			 Thn = TgS - TgP;
		    }
	       }
	       {
		    E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k;
		    {
			 E Tl, Tn, Tk, Tm;
			 Tl = ri[WS(rs, 8)];
			 Tn = ii[WS(rs, 8)];
			 Tk = W[14];
			 Tm = W[15];
			 To = FMA(Tk, Tl, Tm * Tn);
			 T6c = FNMS(Tm, Tl, Tk * Tn);
		    }
		    {
			 E Tq, Ts, Tp, Tr;
			 Tq = ri[WS(rs, 40)];
			 Ts = ii[WS(rs, 40)];
			 Tp = W[78];
			 Tr = W[79];
			 Tt = FMA(Tp, Tq, Tr * Ts);
			 T6d = FNMS(Tr, Tq, Tp * Ts);
		    }
		    T6e = T6c - T6d;
		    T6f = To - Tt;
		    {
			 E Tw, Ty, Tv, Tx;
			 Tw = ri[WS(rs, 56)];
			 Ty = ii[WS(rs, 56)];
			 Tv = W[110];
			 Tx = W[111];
			 Tz = FMA(Tv, Tw, Tx * Ty);
			 T6i = FNMS(Tx, Tw, Tv * Ty);
		    }
		    {
			 E TB, TD, TA, TC;
			 TB = ri[WS(rs, 24)];
			 TD = ii[WS(rs, 24)];
			 TA = W[46];
			 TC = W[47];
			 TE = FMA(TA, TB, TC * TD);
			 T6j = FNMS(TC, TB, TA * TD);
		    }
		    T6h = Tz - TE;
		    T6k = T6i - T6j;
		    {
			 E Tu, TF, TcM, TcN;
			 Tu = To + Tt;
			 TF = Tz + TE;
			 TG = Tu + TF;
			 Thm = TF - Tu;
			 TcM = T6c + T6d;
			 TcN = T6i + T6j;
			 TcO = TcM - TcN;
			 TgO = TcM + TcN;
		    }
		    {
			 E T6g, T6l, TaA, TaB;
			 T6g = T6e - T6f;
			 T6l = T6h + T6k;
			 T6m = KP707106781 * (T6g - T6l);
			 ThQ = KP707106781 * (T6g + T6l);
			 TaA = T6f + T6e;
			 TaB = T6h - T6k;
			 TaC = KP707106781 * (TaA + TaB);
			 Tim = KP707106781 * (TaB - TaA);
		    }
	       }
	       {
		    E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x;
		    {
			 E TM, T6o, TR, T6p;
			 {
			      E TJ, TL, TI, TK;
			      TJ = ri[WS(rs, 4)];
			      TL = ii[WS(rs, 4)];
			      TI = W[6];
			      TK = W[7];
			      TM = FMA(TI, TJ, TK * TL);
			      T6o = FNMS(TK, TJ, TI * TL);
			 }
			 {
			      E TO, TQ, TN, TP;
			      TO = ri[WS(rs, 36)];
			      TQ = ii[WS(rs, 36)];
			      TN = W[70];
			      TP = W[71];
			      TR = FMA(TN, TO, TP * TQ);
			      T6p = FNMS(TP, TO, TN * TQ);
			 }
			 TS = TM + TR;
			 TcQ = T6o + T6p;
			 T6q = T6o - T6p;
			 T6t = TM - TR;
		    }
		    {
			 E TX, T6u, T12, T6v;
			 {
			      E TU, TW, TT, TV;
			      TU = ri[WS(rs, 20)];
			      TW = ii[WS(rs, 20)];
			      TT = W[38];
			      TV = W[39];
			      TX = FMA(TT, TU, TV * TW);
			      T6u = FNMS(TV, TU, TT * TW);
			 }
			 {
			      E TZ, T11, TY, T10;
			      TZ = ri[WS(rs, 52)];
			      T11 = ii[WS(rs, 52)];
			      TY = W[102];
			      T10 = W[103];
			      T12 = FMA(TY, TZ, T10 * T11);
			      T6v = FNMS(T10, TZ, TY * T11);
			 }
			 T13 = TX + T12;
			 TcR = T6u + T6v;
			 T6r = TX - T12;
			 T6w = T6u - T6v;
		    }
		    T14 = TS + T13;
		    Tfq = TcQ + TcR;
		    T6s = T6q + T6r;
		    T6x = T6t - T6w;
		    T6y = FNMS(KP923879532, T6x, KP382683432 * T6s);
		    T9O = FMA(KP923879532, T6s, KP382683432 * T6x);
		    {
			 E TaE, TaF, TcS, TcT;
			 TaE = T6q - T6r;
			 TaF = T6t + T6w;
			 TaG = FNMS(KP382683432, TaF, KP923879532 * TaE);
			 Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF);
			 TcS = TcQ - TcR;
			 TcT = TS - T13;
			 TcU = TcS - TcT;
			 TeE = TcT + TcS;
		    }
	       }
	       {
		    E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I;
		    {
			 E T19, T6z, T1e, T6A;
			 {
			      E T16, T18, T15, T17;
			      T16 = ri[WS(rs, 60)];
			      T18 = ii[WS(rs, 60)];
			      T15 = W[118];
			      T17 = W[119];
			      T19 = FMA(T15, T16, T17 * T18);
			      T6z = FNMS(T17, T16, T15 * T18);
			 }
			 {
			      E T1b, T1d, T1a, T1c;
			      T1b = ri[WS(rs, 28)];
			      T1d = ii[WS(rs, 28)];
			      T1a = W[54];
			      T1c = W[55];
			      T1e = FMA(T1a, T1b, T1c * T1d);
			      T6A = FNMS(T1c, T1b, T1a * T1d);
			 }
			 T1f = T19 + T1e;
			 TcW = T6z + T6A;
			 T6B = T6z - T6A;
			 T6E = T19 - T1e;
		    }
		    {
			 E T1k, T6F, T1p, T6G;
			 {
			      E T1h, T1j, T1g, T1i;
			      T1h = ri[WS(rs, 12)];
			      T1j = ii[WS(rs, 12)];
			      T1g = W[22];
			      T1i = W[23];
			      T1k = FMA(T1g, T1h, T1i * T1j);
			      T6F = FNMS(T1i, T1h, T1g * T1j);
			 }
			 {
			      E T1m, T1o, T1l, T1n;
			      T1m = ri[WS(rs, 44)];
			      T1o = ii[WS(rs, 44)];
			      T1l = W[86];
			      T1n = W[87];
			      T1p = FMA(T1l, T1m, T1n * T1o);
			      T6G = FNMS(T1n, T1m, T1l * T1o);
			 }
			 T1q = T1k + T1p;
			 TcX = T6F + T6G;
			 T6C = T1k - T1p;
			 T6H = T6F - T6G;
		    }
		    T1r = T1f + T1q;
		    Tfr = TcW + TcX;
		    T6D = T6B + T6C;
		    T6I = T6E - T6H;
		    T6J = FMA(KP382683432, T6D, KP923879532 * T6I);
		    T9P = FNMS(KP923879532, T6D, KP382683432 * T6I);
		    {
			 E TaH, TaI, TcV, TcY;
			 TaH = T6B - T6C;
			 TaI = T6E + T6H;
			 TaJ = FMA(KP923879532, TaH, KP382683432 * TaI);
			 Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI);
			 TcV = T1f - T1q;
			 TcY = TcW - TcX;
			 TcZ = TcV + TcY;
			 TeF = TcV - TcY;
		    }
	       }
	       {
		    E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W;
		    E T6Z, T2c, Td9, T6R, T6U;
		    {
			 E T1v, T1x, T1u, T1w;
			 T1v = ri[WS(rs, 2)];
			 T1x = ii[WS(rs, 2)];
			 T1u = W[2];
			 T1w = W[3];
			 T1y = FMA(T1u, T1v, T1w * T1x);
			 T6M = FNMS(T1w, T1v, T1u * T1x);
		    }
		    {
			 E T1A, T1C, T1z, T1B;
			 T1A = ri[WS(rs, 34)];
			 T1C = ii[WS(rs, 34)];
			 T1z = W[66];
			 T1B = W[67];
			 T1D = FMA(T1z, T1A, T1B * T1C);
			 T6N = FNMS(T1B, T1A, T1z * T1C);
		    }
		    T1E = T1y + T1D;
		    Td2 = T6M + T6N;
		    {
			 E T1G, T1I, T1F, T1H;
			 T1G = ri[WS(rs, 18)];
			 T1I = ii[WS(rs, 18)];
			 T1F = W[34];
			 T1H = W[35];
			 T1J = FMA(T1F, T1G, T1H * T1I);
			 T74 = FNMS(T1H, T1G, T1F * T1I);
		    }
		    {
			 E T1L, T1N, T1K, T1M;
			 T1L = ri[WS(rs, 50)];
			 T1N = ii[WS(rs, 50)];
			 T1K = W[98];
			 T1M = W[99];
			 T1O = FMA(T1K, T1L, T1M * T1N);
			 T75 = FNMS(T1M, T1L, T1K * T1N);
		    }
		    T1P = T1J + T1O;
		    Td3 = T74 + T75;
		    {
			 E T1V, T6X, T20, T6Y;
			 {
			      E T1S, T1U, T1R, T1T;
			      T1S = ri[WS(rs, 10)];
			      T1U = ii[WS(rs, 10)];
			      T1R = W[18];
			      T1T = W[19];
			      T1V = FMA(T1R, T1S, T1T * T1U);
			      T6X = FNMS(T1T, T1S, T1R * T1U);
			 }
			 {
			      E T1X, T1Z, T1W, T1Y;
			      T1X = ri[WS(rs, 42)];
			      T1Z = ii[WS(rs, 42)];
			      T1W = W[82];
			      T1Y = W[83];
			      T20 = FMA(T1W, T1X, T1Y * T1Z);
			      T6Y = FNMS(T1Y, T1X, T1W * T1Z);
			 }
			 T21 = T1V + T20;
			 Td8 = T6X + T6Y;
			 T6W = T1V - T20;
			 T6Z = T6X - T6Y;
		    }
		    {
			 E T26, T6S, T2b, T6T;
			 {
			      E T23, T25, T22, T24;
			      T23 = ri[WS(rs, 58)];
			      T25 = ii[WS(rs, 58)];
			      T22 = W[114];
			      T24 = W[115];
			      T26 = FMA(T22, T23, T24 * T25);
			      T6S = FNMS(T24, T23, T22 * T25);
			 }
			 {
			      E T28, T2a, T27, T29;
			      T28 = ri[WS(rs, 26)];
			      T2a = ii[WS(rs, 26)];
			      T27 = W[50];
			      T29 = W[51];
			      T2b = FMA(T27, T28, T29 * T2a);
			      T6T = FNMS(T29, T28, T27 * T2a);
			 }
			 T2c = T26 + T2b;
			 Td9 = T6S + T6T;
			 T6R = T26 - T2b;
			 T6U = T6S - T6T;
		    }
		    T1Q = T1E + T1P;
		    T2d = T21 + T2c;
		    Tfx = T1Q - T2d;
		    Tfu = Td2 + Td3;
		    Tfv = Td8 + Td9;
		    Tfw = Tfu - Tfv;
		    {
			 E T6O, T6P, Td7, Tda;
			 T6O = T6M - T6N;
			 T6P = T1J - T1O;
			 T6Q = T6O + T6P;
			 TaM = T6O - T6P;
			 Td7 = T1E - T1P;
			 Tda = Td8 - Td9;
			 Tdb = Td7 - Tda;
			 TeJ = Td7 + Tda;
		    }
		    {
			 E T6V, T70, T78, T79;
			 T6V = T6R - T6U;
			 T70 = T6W + T6Z;
			 T71 = KP707106781 * (T6V - T70);
			 TaQ = KP707106781 * (T70 + T6V);
			 T78 = T6Z - T6W;
			 T79 = T6R + T6U;
			 T7a = KP707106781 * (T78 - T79);
			 TaN = KP707106781 * (T78 + T79);
		    }
		    {
			 E Td4, Td5, T73, T76;
			 Td4 = Td2 - Td3;
			 Td5 = T2c - T21;
			 Td6 = Td4 - Td5;
			 TeI = Td4 + Td5;
			 T73 = T1y - T1D;
			 T76 = T74 - T75;
			 T77 = T73 - T76;
			 TaP = T73 + T76;
		    }
	       }
	       {
		    E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n;
		    E T7q, T2X, Tdk, T7i, T7l;
		    {
			 E T2g, T2i, T2f, T2h;
			 T2g = ri[WS(rs, 62)];
			 T2i = ii[WS(rs, 62)];
			 T2f = W[122];
			 T2h = W[123];
			 T2j = FMA(T2f, T2g, T2h * T2i);
			 T7d = FNMS(T2h, T2g, T2f * T2i);
		    }
		    {
			 E T2l, T2n, T2k, T2m;
			 T2l = ri[WS(rs, 30)];
			 T2n = ii[WS(rs, 30)];
			 T2k = W[58];
			 T2m = W[59];
			 T2o = FMA(T2k, T2l, T2m * T2n);
			 T7e = FNMS(T2m, T2l, T2k * T2n);
		    }
		    T2p = T2j + T2o;
		    Tdd = T7d + T7e;
		    {
			 E T2r, T2t, T2q, T2s;
			 T2r = ri[WS(rs, 14)];
			 T2t = ii[WS(rs, 14)];
			 T2q = W[26];
			 T2s = W[27];
			 T2u = FMA(T2q, T2r, T2s * T2t);
			 T7v = FNMS(T2s, T2r, T2q * T2t);
		    }
		    {
			 E T2w, T2y, T2v, T2x;
			 T2w = ri[WS(rs, 46)];
			 T2y = ii[WS(rs, 46)];
			 T2v = W[90];
			 T2x = W[91];
			 T2z = FMA(T2v, T2w, T2x * T2y);
			 T7w = FNMS(T2x, T2w, T2v * T2y);
		    }
		    T2A = T2u + T2z;
		    Tde = T7v + T7w;
		    {
			 E T2G, T7o, T2L, T7p;
			 {
			      E T2D, T2F, T2C, T2E;
			      T2D = ri[WS(rs, 6)];
			      T2F = ii[WS(rs, 6)];
			      T2C = W[10];
			      T2E = W[11];
			      T2G = FMA(T2C, T2D, T2E * T2F);
			      T7o = FNMS(T2E, T2D, T2C * T2F);
			 }
			 {
			      E T2I, T2K, T2H, T2J;
			      T2I = ri[WS(rs, 38)];
			      T2K = ii[WS(rs, 38)];
			      T2H = W[74];
			      T2J = W[75];
			      T2L = FMA(T2H, T2I, T2J * T2K);
			      T7p = FNMS(T2J, T2I, T2H * T2K);
			 }
			 T2M = T2G + T2L;
			 Tdj = T7o + T7p;
			 T7n = T2G - T2L;
			 T7q = T7o - T7p;
		    }
		    {
			 E T2R, T7j, T2W, T7k;
			 {
			      E T2O, T2Q, T2N, T2P;
			      T2O = ri[WS(rs, 54)];
			      T2Q = ii[WS(rs, 54)];
			      T2N = W[106];
			      T2P = W[107];
			      T2R = FMA(T2N, T2O, T2P * T2Q);
			      T7j = FNMS(T2P, T2O, T2N * T2Q);
			 }
			 {
			      E T2T, T2V, T2S, T2U;
			      T2T = ri[WS(rs, 22)];
			      T2V = ii[WS(rs, 22)];
			      T2S = W[42];
			      T2U = W[43];
			      T2W = FMA(T2S, T2T, T2U * T2V);
			      T7k = FNMS(T2U, T2T, T2S * T2V);
			 }
			 T2X = T2R + T2W;
			 Tdk = T7j + T7k;
			 T7i = T2R - T2W;
			 T7l = T7j - T7k;
		    }
		    T2B = T2p + T2A;
		    T2Y = T2M + T2X;
		    Tfz = T2B - T2Y;
		    TfA = Tdd + Tde;
		    TfB = Tdj + Tdk;
		    TfC = TfA - TfB;
		    {
			 E T7f, T7g, Tdi, Tdl;
			 T7f = T7d - T7e;
			 T7g = T2u - T2z;
			 T7h = T7f + T7g;
			 TaW = T7f - T7g;
			 Tdi = T2p - T2A;
			 Tdl = Tdj - Tdk;
			 Tdm = Tdi - Tdl;
			 TeM = Tdi + Tdl;
		    }
		    {
			 E T7m, T7r, T7z, T7A;
			 T7m = T7i - T7l;
			 T7r = T7n + T7q;
			 T7s = KP707106781 * (T7m - T7r);
			 TaU = KP707106781 * (T7r + T7m);
			 T7z = T7q - T7n;
			 T7A = T7i + T7l;
			 T7B = KP707106781 * (T7z - T7A);
			 TaX = KP707106781 * (T7z + T7A);
		    }
		    {
			 E Tdf, Tdg, T7u, T7x;
			 Tdf = Tdd - Tde;
			 Tdg = T2X - T2M;
			 Tdh = Tdf - Tdg;
			 TeL = Tdf + Tdg;
			 T7u = T2j - T2o;
			 T7x = T7v - T7w;
			 T7y = T7u - T7x;
			 TaT = T7u + T7x;
		    }
	       }
	       {
		    E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G;
		    E T8H, T5h, TdT, T8J, T8M;
		    {
			 E T4A, T4C, T4z, T4B;
			 T4A = ri[WS(rs, 63)];
			 T4C = ii[WS(rs, 63)];
			 T4z = W[124];
			 T4B = W[125];
			 T4D = FMA(T4z, T4A, T4B * T4C);
			 T9e = FNMS(T4B, T4A, T4z * T4C);
		    }
		    {
			 E T4F, T4H, T4E, T4G;
			 T4F = ri[WS(rs, 31)];
			 T4H = ii[WS(rs, 31)];
			 T4E = W[60];
			 T4G = W[61];
			 T4I = FMA(T4E, T4F, T4G * T4H);
			 T9f = FNMS(T4G, T4F, T4E * T4H);
		    }
		    T4J = T4D + T4I;
		    Te8 = T9e + T9f;
		    {
			 E T4L, T4N, T4K, T4M;
			 T4L = ri[WS(rs, 15)];
			 T4N = ii[WS(rs, 15)];
			 T4K = W[28];
			 T4M = W[29];
			 T4O = FMA(T4K, T4L, T4M * T4N);
			 T8A = FNMS(T4M, T4L, T4K * T4N);
		    }
		    {
			 E T4Q, T4S, T4P, T4R;
			 T4Q = ri[WS(rs, 47)];
			 T4S = ii[WS(rs, 47)];
			 T4P = W[92];
			 T4R = W[93];
			 T4T = FMA(T4P, T4Q, T4R * T4S);
			 T8B = FNMS(T4R, T4Q, T4P * T4S);
		    }
		    T4U = T4O + T4T;
		    Te9 = T8A + T8B;
		    {
			 E T50, T8E, T55, T8F;
			 {
			      E T4X, T4Z, T4W, T4Y;
			      T4X = ri[WS(rs, 7)];
			      T4Z = ii[WS(rs, 7)];
			      T4W = W[12];
			      T4Y = W[13];
			      T50 = FMA(T4W, T4X, T4Y * T4Z);
			      T8E = FNMS(T4Y, T4X, T4W * T4Z);
			 }
			 {
			      E T52, T54, T51, T53;
			      T52 = ri[WS(rs, 39)];
			      T54 = ii[WS(rs, 39)];
			      T51 = W[76];
			      T53 = W[77];
			      T55 = FMA(T51, T52, T53 * T54);
			      T8F = FNMS(T53, T52, T51 * T54);
			 }
			 T56 = T50 + T55;
			 TdS = T8E + T8F;
			 T8G = T8E - T8F;
			 T8H = T50 - T55;
		    }
		    {
			 E T5b, T8K, T5g, T8L;
			 {
			      E T58, T5a, T57, T59;
			      T58 = ri[WS(rs, 55)];
			      T5a = ii[WS(rs, 55)];
			      T57 = W[108];
			      T59 = W[109];
			      T5b = FMA(T57, T58, T59 * T5a);
			      T8K = FNMS(T59, T58, T57 * T5a);
			 }
			 {
			      E T5d, T5f, T5c, T5e;
			      T5d = ri[WS(rs, 23)];
			      T5f = ii[WS(rs, 23)];
			      T5c = W[44];
			      T5e = W[45];
			      T5g = FMA(T5c, T5d, T5e * T5f);
			      T8L = FNMS(T5e, T5d, T5c * T5f);
			 }
			 T5h = T5b + T5g;
			 TdT = T8K + T8L;
			 T8J = T5b - T5g;
			 T8M = T8K - T8L;
		    }
		    {
			 E T4V, T5i, Tea, Teb;
			 T4V = T4J + T4U;
			 T5i = T56 + T5h;
			 T5j = T4V + T5i;
			 TfR = T4V - T5i;
			 Tea = Te8 - Te9;
			 Teb = T5h - T56;
			 Tec = Tea - Teb;
			 Tf0 = Tea + Teb;
		    }
		    {
			 E TfW, TfX, T8z, T8C;
			 TfW = Te8 + Te9;
			 TfX = TdS + TdT;
			 TfY = TfW - TfX;
			 Tgy = TfW + TfX;
			 T8z = T4D - T4I;
			 T8C = T8A - T8B;
			 T8D = T8z - T8C;
			 Tbl = T8z + T8C;
		    }
		    {
			 E T8I, T8N, T9j, T9k;
			 T8I = T8G - T8H;
			 T8N = T8J + T8M;
			 T8O = KP707106781 * (T8I - T8N);
			 Tbx = KP707106781 * (T8I + T8N);
			 T9j = T8J - T8M;
			 T9k = T8H + T8G;
			 T9l = KP707106781 * (T9j - T9k);
			 Tbm = KP707106781 * (T9k + T9j);
		    }
		    {
			 E TdR, TdU, T9g, T9h;
			 TdR = T4J - T4U;
			 TdU = TdS - TdT;
			 TdV = TdR - TdU;
			 TeX = TdR + TdU;
			 T9g = T9e - T9f;
			 T9h = T4O - T4T;
			 T9i = T9g + T9h;
			 Tbw = T9g - T9h;
		    }
	       }
	       {
		    E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q;
		    E T7T, T3K, TdJ, T7L, T7O;
		    {
			 E T33, T35, T32, T34;
			 T33 = ri[WS(rs, 1)];
			 T35 = ii[WS(rs, 1)];
			 T32 = W[0];
			 T34 = W[1];
			 T36 = FMA(T32, T33, T34 * T35);
			 T7G = FNMS(T34, T33, T32 * T35);
		    }
		    {
			 E T38, T3a, T37, T39;
			 T38 = ri[WS(rs, 33)];
			 T3a = ii[WS(rs, 33)];
			 T37 = W[64];
			 T39 = W[65];
			 T3b = FMA(T37, T38, T39 * T3a);
			 T7H = FNMS(T39, T38, T37 * T3a);
		    }
		    T3c = T36 + T3b;
		    Tdq = T7G + T7H;
		    {
			 E T3e, T3g, T3d, T3f;
			 T3e = ri[WS(rs, 17)];
			 T3g = ii[WS(rs, 17)];
			 T3d = W[32];
			 T3f = W[33];
			 T3h = FMA(T3d, T3e, T3f * T3g);
			 T8m = FNMS(T3f, T3e, T3d * T3g);
		    }
		    {
			 E T3j, T3l, T3i, T3k;
			 T3j = ri[WS(rs, 49)];
			 T3l = ii[WS(rs, 49)];
			 T3i = W[96];
			 T3k = W[97];
			 T3m = FMA(T3i, T3j, T3k * T3l);
			 T8n = FNMS(T3k, T3j, T3i * T3l);
		    }
		    T3n = T3h + T3m;
		    Tdr = T8m + T8n;
		    {
			 E T3t, T7R, T3y, T7S;
			 {
			      E T3q, T3s, T3p, T3r;
			      T3q = ri[WS(rs, 9)];
			      T3s = ii[WS(rs, 9)];
			      T3p = W[16];
			      T3r = W[17];
			      T3t = FMA(T3p, T3q, T3r * T3s);
			      T7R = FNMS(T3r, T3q, T3p * T3s);
			 }
			 {
			      E T3v, T3x, T3u, T3w;
			      T3v = ri[WS(rs, 41)];
			      T3x = ii[WS(rs, 41)];
			      T3u = W[80];
			      T3w = W[81];
			      T3y = FMA(T3u, T3v, T3w * T3x);
			      T7S = FNMS(T3w, T3v, T3u * T3x);
			 }
			 T3z = T3t + T3y;
			 TdI = T7R + T7S;
			 T7Q = T3t - T3y;
			 T7T = T7R - T7S;
		    }
		    {
			 E T3E, T7M, T3J, T7N;
			 {
			      E T3B, T3D, T3A, T3C;
			      T3B = ri[WS(rs, 57)];
			      T3D = ii[WS(rs, 57)];
			      T3A = W[112];
			      T3C = W[113];
			      T3E = FMA(T3A, T3B, T3C * T3D);
			      T7M = FNMS(T3C, T3B, T3A * T3D);
			 }
			 {
			      E T3G, T3I, T3F, T3H;
			      T3G = ri[WS(rs, 25)];
			      T3I = ii[WS(rs, 25)];
			      T3F = W[48];
			      T3H = W[49];
			      T3J = FMA(T3F, T3G, T3H * T3I);
			      T7N = FNMS(T3H, T3G, T3F * T3I);
			 }
			 T3K = T3E + T3J;
			 TdJ = T7M + T7N;
			 T7L = T3E - T3J;
			 T7O = T7M - T7N;
		    }
		    {
			 E T3o, T3L, TdH, TdK;
			 T3o = T3c + T3n;
			 T3L = T3z + T3K;
			 T3M = T3o + T3L;
			 TfL = T3o - T3L;
			 TdH = T3c - T3n;
			 TdK = TdI - TdJ;
			 TdL = TdH - TdK;
			 TeQ = TdH + TdK;
		    }
		    {
			 E TfG, TfH, T7I, T7J;
			 TfG = Tdq + Tdr;
			 TfH = TdI + TdJ;
			 TfI = TfG - TfH;
			 Tgt = TfG + TfH;
			 T7I = T7G - T7H;
			 T7J = T3h - T3m;
			 T7K = T7I + T7J;
			 Tb2 = T7I - T7J;
		    }
		    {
			 E T7P, T7U, T8q, T8r;
			 T7P = T7L - T7O;
			 T7U = T7Q + T7T;
			 T7V = KP707106781 * (T7P - T7U);
			 Tbe = KP707106781 * (T7U + T7P);
			 T8q = T7T - T7Q;
			 T8r = T7L + T7O;
			 T8s = KP707106781 * (T8q - T8r);
			 Tb3 = KP707106781 * (T8q + T8r);
		    }
		    {
			 E Tds, Tdt, T8l, T8o;
			 Tds = Tdq - Tdr;
			 Tdt = T3K - T3z;
			 Tdu = Tds - Tdt;
			 TeT = Tds + Tdt;
			 T8l = T36 - T3b;
			 T8o = T8m - T8n;
			 T8p = T8l - T8o;
			 Tbd = T8l + T8o;
		    }
	       }
	       {
		    E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X;
		    E T84;
		    {
			 E T3R, T88, T3W, T89;
			 {
			      E T3O, T3Q, T3N, T3P;
			      T3O = ri[WS(rs, 5)];
			      T3Q = ii[WS(rs, 5)];
			      T3N = W[8];
			      T3P = W[9];
			      T3R = FMA(T3N, T3O, T3P * T3Q);
			      T88 = FNMS(T3P, T3O, T3N * T3Q);
			 }
			 {
			      E T3T, T3V, T3S, T3U;
			      T3T = ri[WS(rs, 37)];
			      T3V = ii[WS(rs, 37)];
			      T3S = W[72];
			      T3U = W[73];
			      T3W = FMA(T3S, T3T, T3U * T3V);
			      T89 = FNMS(T3U, T3T, T3S * T3V);
			 }
			 T3X = T3R + T3W;
			 TdB = T88 + T89;
			 T8a = T88 - T89;
			 T8d = T3R - T3W;
		    }
		    {
			 E T4p, T7Y, T4u, T7Z;
			 {
			      E T4m, T4o, T4l, T4n;
			      T4m = ri[WS(rs, 13)];
			      T4o = ii[WS(rs, 13)];
			      T4l = W[24];
			      T4n = W[25];
			      T4p = FMA(T4l, T4m, T4n * T4o);
			      T7Y = FNMS(T4n, T4m, T4l * T4o);
			 }
			 {
			      E T4r, T4t, T4q, T4s;
			      T4r = ri[WS(rs, 45)];
			      T4t = ii[WS(rs, 45)];
			      T4q = W[88];
			      T4s = W[89];
			      T4u = FMA(T4q, T4r, T4s * T4t);
			      T7Z = FNMS(T4s, T4r, T4q * T4t);
			 }
			 T4v = T4p + T4u;
			 Tdx = T7Y + T7Z;
			 T80 = T7Y - T7Z;
			 T85 = T4p - T4u;
		    }
		    {
			 E T42, T8e, T47, T8f;
			 {
			      E T3Z, T41, T3Y, T40;
			      T3Z = ri[WS(rs, 21)];
			      T41 = ii[WS(rs, 21)];
			      T3Y = W[40];
			      T40 = W[41];
			      T42 = FMA(T3Y, T3Z, T40 * T41);
			      T8e = FNMS(T40, T3Z, T3Y * T41);
			 }
			 {
			      E T44, T46, T43, T45;
			      T44 = ri[WS(rs, 53)];
			      T46 = ii[WS(rs, 53)];
			      T43 = W[104];
			      T45 = W[105];
			      T47 = FMA(T43, T44, T45 * T46);
			      T8f = FNMS(T45, T44, T43 * T46);
			 }
			 T48 = T42 + T47;
			 TdC = T8e + T8f;
			 T8b = T42 - T47;
			 T8g = T8e - T8f;
		    }
		    {
			 E T4e, T82, T4j, T83;
			 {
			      E T4b, T4d, T4a, T4c;
			      T4b = ri[WS(rs, 61)];
			      T4d = ii[WS(rs, 61)];
			      T4a = W[120];
			      T4c = W[121];
			      T4e = FMA(T4a, T4b, T4c * T4d);
			      T82 = FNMS(T4c, T4b, T4a * T4d);
			 }
			 {
			      E T4g, T4i, T4f, T4h;
			      T4g = ri[WS(rs, 29)];
			      T4i = ii[WS(rs, 29)];
			      T4f = W[56];
			      T4h = W[57];
			      T4j = FMA(T4f, T4g, T4h * T4i);
			      T83 = FNMS(T4h, T4g, T4f * T4i);
			 }
			 T4k = T4e + T4j;
			 Tdw = T82 + T83;
			 T7X = T4e - T4j;
			 T84 = T82 - T83;
		    }
		    {
			 E T49, T4w, TdA, TdD;
			 T49 = T3X + T48;
			 T4w = T4k + T4v;
			 T4x = T49 + T4w;
			 TfJ = T4w - T49;
			 TdA = T3X - T48;
			 TdD = TdB - TdC;
			 TdE = TdA + TdD;
			 TdM = TdD - TdA;
		    }
		    {
			 E TfM, TfN, T81, T86;
			 TfM = TdB + TdC;
			 TfN = Tdw + Tdx;
			 TfO = TfM - TfN;
			 Tgu = TfM + TfN;
			 T81 = T7X - T80;
			 T86 = T84 + T85;
			 T87 = FNMS(KP923879532, T86, KP382683432 * T81);
			 T8v = FMA(KP382683432, T86, KP923879532 * T81);
		    }
		    {
			 E T8c, T8h, Tb8, Tb9;
			 T8c = T8a + T8b;
			 T8h = T8d - T8g;
			 T8i = FMA(KP923879532, T8c, KP382683432 * T8h);
			 T8u = FNMS(KP923879532, T8h, KP382683432 * T8c);
			 Tb8 = T8a - T8b;
			 Tb9 = T8d + T8g;
			 Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9);
			 Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8);
		    }
		    {
			 E Tdv, Tdy, Tb5, Tb6;
			 Tdv = T4k - T4v;
			 Tdy = Tdw - Tdx;
			 Tdz = Tdv - Tdy;
			 TdN = Tdv + Tdy;
			 Tb5 = T7X + T80;
			 Tb6 = T84 - T85;
			 Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5);
			 Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5);
		    }
	       }
	       {
		    E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93;
		    E T96;
		    {
			 E T5o, T8Q, T5t, T8R;
			 {
			      E T5l, T5n, T5k, T5m;
			      T5l = ri[WS(rs, 3)];
			      T5n = ii[WS(rs, 3)];
			      T5k = W[4];
			      T5m = W[5];
			      T5o = FMA(T5k, T5l, T5m * T5n);
			      T8Q = FNMS(T5m, T5l, T5k * T5n);
			 }
			 {
			      E T5q, T5s, T5p, T5r;
			      T5q = ri[WS(rs, 35)];
			      T5s = ii[WS(rs, 35)];
			      T5p = W[68];
			      T5r = W[69];
			      T5t = FMA(T5p, T5q, T5r * T5s);
			      T8R = FNMS(T5r, T5q, T5p * T5s);
			 }
			 T5u = T5o + T5t;
			 TdW = T8Q + T8R;
			 T8S = T8Q - T8R;
			 T8V = T5o - T5t;
		    }
		    {
			 E T5W, T97, T61, T98;
			 {
			      E T5T, T5V, T5S, T5U;
			      T5T = ri[WS(rs, 11)];
			      T5V = ii[WS(rs, 11)];
			      T5S = W[20];
			      T5U = W[21];
			      T5W = FMA(T5S, T5T, T5U * T5V);
			      T97 = FNMS(T5U, T5T, T5S * T5V);
			 }
			 {
			      E T5Y, T60, T5X, T5Z;
			      T5Y = ri[WS(rs, 43)];
			      T60 = ii[WS(rs, 43)];
			      T5X = W[84];
			      T5Z = W[85];
			      T61 = FMA(T5X, T5Y, T5Z * T60);
			      T98 = FNMS(T5Z, T5Y, T5X * T60);
			 }
			 T62 = T5W + T61;
			 Te3 = T97 + T98;
			 T94 = T5W - T61;
			 T99 = T97 - T98;
		    }
		    {
			 E T5z, T8W, T5E, T8X;
			 {
			      E T5w, T5y, T5v, T5x;
			      T5w = ri[WS(rs, 19)];
			      T5y = ii[WS(rs, 19)];
			      T5v = W[36];
			      T5x = W[37];
			      T5z = FMA(T5v, T5w, T5x * T5y);
			      T8W = FNMS(T5x, T5w, T5v * T5y);
			 }
			 {
			      E T5B, T5D, T5A, T5C;
			      T5B = ri[WS(rs, 51)];
			      T5D = ii[WS(rs, 51)];
			      T5A = W[100];
			      T5C = W[101];
			      T5E = FMA(T5A, T5B, T5C * T5D);
			      T8X = FNMS(T5C, T5B, T5A * T5D);
			 }
			 T5F = T5z + T5E;
			 TdX = T8W + T8X;
			 T8T = T5z - T5E;
			 T8Y = T8W - T8X;
		    }
		    {
			 E T5L, T91, T5Q, T92;
			 {
			      E T5I, T5K, T5H, T5J;
			      T5I = ri[WS(rs, 59)];
			      T5K = ii[WS(rs, 59)];
			      T5H = W[116];
			      T5J = W[117];
			      T5L = FMA(T5H, T5I, T5J * T5K);
			      T91 = FNMS(T5J, T5I, T5H * T5K);
			 }
			 {
			      E T5N, T5P, T5M, T5O;
			      T5N = ri[WS(rs, 27)];
			      T5P = ii[WS(rs, 27)];
			      T5M = W[52];
			      T5O = W[53];
			      T5Q = FMA(T5M, T5N, T5O * T5P);
			      T92 = FNMS(T5O, T5N, T5M * T5P);
			 }
			 T5R = T5L + T5Q;
			 Te2 = T91 + T92;
			 T93 = T91 - T92;
			 T96 = T5L - T5Q;
		    }
		    {
			 E T5G, T63, Te1, Te4;
			 T5G = T5u + T5F;
			 T63 = T5R + T62;
			 T64 = T5G + T63;
			 TfZ = T63 - T5G;
			 Te1 = T5R - T62;
			 Te4 = Te2 - Te3;
			 Te5 = Te1 + Te4;
			 Ted = Te1 - Te4;
		    }
		    {
			 E TfS, TfT, T8U, T8Z;
			 TfS = TdW + TdX;
			 TfT = Te2 + Te3;
			 TfU = TfS - TfT;
			 Tgz = TfS + TfT;
			 T8U = T8S + T8T;
			 T8Z = T8V - T8Y;
			 T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U);
			 T9o = FMA(KP923879532, T8U, KP382683432 * T8Z);
		    }
		    {
			 E T95, T9a, Tbr, Tbs;
			 T95 = T93 + T94;
			 T9a = T96 - T99;
			 T9b = FMA(KP382683432, T95, KP923879532 * T9a);
			 T9n = FNMS(KP923879532, T95, KP382683432 * T9a);
			 Tbr = T93 - T94;
			 Tbs = T96 + T99;
			 Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs);
			 Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs);
		    }
		    {
			 E TdY, TdZ, Tbo, Tbp;
			 TdY = TdW - TdX;
			 TdZ = T5u - T5F;
			 Te0 = TdY - TdZ;
			 Tee = TdZ + TdY;
			 Tbo = T8S - T8T;
			 Tbp = T8V + T8Y;
			 Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo);
			 TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp);
		    }
	       }
	       {
		    E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq;
		    E TgM;
		    {
			 E TH, T1s, TgI, TgJ;
			 TH = Tj + TG;
			 T1s = T14 + T1r;
			 T1t = TH + T1s;
			 Tgn = TH - T1s;
			 TgI = Tgt + Tgu;
			 TgJ = Tgy + Tgz;
			 TgK = TgI - TgJ;
			 TgL = TgI + TgJ;
		    }
		    {
			 E TgN, TgU, T2e, T2Z;
			 TgN = Tfq + Tfr;
			 TgU = TgO + TgT;
			 TgV = TgN + TgU;
			 Th1 = TgU - TgN;
			 T2e = T1Q + T2d;
			 T2Z = T2B + T2Y;
			 T30 = T2e + T2Z;
			 Th0 = T2Z - T2e;
		    }
		    {
			 E T4y, T65, Tgs, Tgv;
			 T4y = T3M + T4x;
			 T65 = T5j + T64;
			 T66 = T4y + T65;
			 TgX = T65 - T4y;
			 Tgs = T3M - T4x;
			 Tgv = Tgt - Tgu;
			 Tgw = Tgs + Tgv;
			 TgE = Tgv - Tgs;
		    }
		    {
			 E Tgx, TgA, Tgo, Tgp;
			 Tgx = T5j - T64;
			 TgA = Tgy - Tgz;
			 TgB = Tgx - TgA;
			 TgF = Tgx + TgA;
			 Tgo = Tfu + Tfv;
			 Tgp = TfA + TfB;
			 Tgq = Tgo - Tgp;
			 TgM = Tgo + Tgp;
		    }
		    {
			 E T31, TgW, TgH, TgY;
			 T31 = T1t + T30;
			 ri[WS(rs, 32)] = T31 - T66;
			 ri[0] = T31 + T66;
			 TgW = TgM + TgV;
			 ii[0] = TgL + TgW;
			 ii[WS(rs, 32)] = TgW - TgL;
			 TgH = T1t - T30;
			 ri[WS(rs, 48)] = TgH - TgK;
			 ri[WS(rs, 16)] = TgH + TgK;
			 TgY = TgV - TgM;
			 ii[WS(rs, 16)] = TgX + TgY;
			 ii[WS(rs, 48)] = TgY - TgX;
		    }
		    {
			 E Tgr, TgC, TgZ, Th2;
			 Tgr = Tgn + Tgq;
			 TgC = KP707106781 * (Tgw + TgB);
			 ri[WS(rs, 40)] = Tgr - TgC;
			 ri[WS(rs, 8)] = Tgr + TgC;
			 TgZ = KP707106781 * (TgE + TgF);
			 Th2 = Th0 + Th1;
			 ii[WS(rs, 8)] = TgZ + Th2;
			 ii[WS(rs, 40)] = Th2 - TgZ;
		    }
		    {
			 E TgD, TgG, Th3, Th4;
			 TgD = Tgn - Tgq;
			 TgG = KP707106781 * (TgE - TgF);
			 ri[WS(rs, 56)] = TgD - TgG;
			 ri[WS(rs, 24)] = TgD + TgG;
			 Th3 = KP707106781 * (TgB - Tgw);
			 Th4 = Th1 - Th0;
			 ii[WS(rs, 24)] = Th3 + Th4;
			 ii[WS(rs, 56)] = Th4 - Th3;
		    }
	       }
	       {
		    E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1;
		    E Tg5;
		    {
			 E Tfp, Tfs, Tgf, Tgg;
			 Tfp = Tj - TG;
			 Tfs = Tfq - Tfr;
			 Tft = Tfp - Tfs;
			 Tg7 = Tfp + Tfs;
			 Tgf = TfR + TfU;
			 Tgg = TfY + TfZ;
			 Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf);
			 Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf);
		    }
		    {
			 E Th7, Th8, Tfy, TfD;
			 Th7 = T1r - T14;
			 Th8 = TgT - TgO;
			 Th9 = Th7 + Th8;
			 Thf = Th8 - Th7;
			 Tfy = Tfw - Tfx;
			 TfD = Tfz + TfC;
			 TfE = KP707106781 * (Tfy - TfD);
			 Th6 = KP707106781 * (Tfy + TfD);
		    }
		    {
			 E TfK, TfP, Tg8, Tg9;
			 TfK = TfI - TfJ;
			 TfP = TfL - TfO;
			 TfQ = FMA(KP923879532, TfK, KP382683432 * TfP);
			 Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK);
			 Tg8 = Tfx + Tfw;
			 Tg9 = Tfz - TfC;
			 Tga = KP707106781 * (Tg8 + Tg9);
			 The = KP707106781 * (Tg9 - Tg8);
		    }
		    {
			 E Tgc, Tgd, TfV, Tg0;
			 Tgc = TfI + TfJ;
			 Tgd = TfL + TfO;
			 Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd);
			 Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc);
			 TfV = TfR - TfU;
			 Tg0 = TfY - TfZ;
			 Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV);
			 Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV);
		    }
		    {
			 E TfF, Tg2, Thd, Thg;
			 TfF = Tft + TfE;
			 Tg2 = TfQ + Tg1;
			 ri[WS(rs, 44)] = TfF - Tg2;
			 ri[WS(rs, 12)] = TfF + Tg2;
			 Thd = Tg4 + Tg5;
			 Thg = The + Thf;
			 ii[WS(rs, 12)] = Thd + Thg;
			 ii[WS(rs, 44)] = Thg - Thd;
		    }
		    {
			 E Tg3, Tg6, Thh, Thi;
			 Tg3 = Tft - TfE;
			 Tg6 = Tg4 - Tg5;
			 ri[WS(rs, 60)] = Tg3 - Tg6;
			 ri[WS(rs, 28)] = Tg3 + Tg6;
			 Thh = Tg1 - TfQ;
			 Thi = Thf - The;
			 ii[WS(rs, 28)] = Thh + Thi;
			 ii[WS(rs, 60)] = Thi - Thh;
		    }
		    {
			 E Tgb, Tgi, Th5, Tha;
			 Tgb = Tg7 + Tga;
			 Tgi = Tge + Tgh;
			 ri[WS(rs, 36)] = Tgb - Tgi;
			 ri[WS(rs, 4)] = Tgb + Tgi;
			 Th5 = Tgk + Tgl;
			 Tha = Th6 + Th9;
			 ii[WS(rs, 4)] = Th5 + Tha;
			 ii[WS(rs, 36)] = Tha - Th5;
		    }
		    {
			 E Tgj, Tgm, Thb, Thc;
			 Tgj = Tg7 - Tga;
			 Tgm = Tgk - Tgl;
			 ri[WS(rs, 52)] = Tgj - Tgm;
			 ri[WS(rs, 20)] = Tgj + Tgm;
			 Thb = Tgh - Tge;
			 Thc = Th9 - Th6;
			 ii[WS(rs, 20)] = Thb + Thc;
			 ii[WS(rs, 52)] = Thc - Thb;
		    }
	       }
	       {
		    E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek;
		    E Teu;
		    {
			 E TcP, Td0, Teo, Tep;
			 TcP = TcL - TcO;
			 Td0 = KP707106781 * (TcU - TcZ);
			 Td1 = TcP - Td0;
			 Ten = TcP + Td0;
			 {
			      E Tdc, Tdn, ThB, ThC;
			      Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6);
			      Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm);
			      Tdo = Tdc - Tdn;
			      ThA = Tdc + Tdn;
			      ThB = KP707106781 * (TeF - TeE);
			      ThC = Thn - Thm;
			      ThD = ThB + ThC;
			      ThJ = ThC - ThB;
			 }
			 Teo = FMA(KP923879532, Td6, KP382683432 * Tdb);
			 Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm);
			 Teq = Teo + Tep;
			 ThI = Tep - Teo;
			 {
			      E Te7, Tev, Teg, Tew, Te6, Tef;
			      Te6 = KP707106781 * (Te0 - Te5);
			      Te7 = TdV - Te6;
			      Tev = TdV + Te6;
			      Tef = KP707106781 * (Ted - Tee);
			      Teg = Tec - Tef;
			      Tew = Tec + Tef;
			      Teh = FNMS(KP980785280, Teg, KP195090322 * Te7);
			      TeB = FMA(KP831469612, Tew, KP555570233 * Tev);
			      Tel = FMA(KP195090322, Teg, KP980785280 * Te7);
			      Tex = FNMS(KP555570233, Tew, KP831469612 * Tev);
			 }
			 {
			      E TdG, Tes, TdP, Tet, TdF, TdO;
			      TdF = KP707106781 * (Tdz - TdE);
			      TdG = Tdu - TdF;
			      Tes = Tdu + TdF;
			      TdO = KP707106781 * (TdM - TdN);
			      TdP = TdL - TdO;
			      Tet = TdL + TdO;
			      TdQ = FMA(KP980785280, TdG, KP195090322 * TdP);
			      TeA = FNMS(KP555570233, Tet, KP831469612 * Tes);
			      Tek = FNMS(KP980785280, TdP, KP195090322 * TdG);
			      Teu = FMA(KP555570233, Tes, KP831469612 * Tet);
			 }
		    }
		    {
			 E Tdp, Tei, ThH, ThK;
			 Tdp = Td1 + Tdo;
			 Tei = TdQ + Teh;
			 ri[WS(rs, 46)] = Tdp - Tei;
			 ri[WS(rs, 14)] = Tdp + Tei;
			 ThH = Tek + Tel;
			 ThK = ThI + ThJ;
			 ii[WS(rs, 14)] = ThH + ThK;
			 ii[WS(rs, 46)] = ThK - ThH;
		    }
		    {
			 E Tej, Tem, ThL, ThM;
			 Tej = Td1 - Tdo;
			 Tem = Tek - Tel;
			 ri[WS(rs, 62)] = Tej - Tem;
			 ri[WS(rs, 30)] = Tej + Tem;
			 ThL = Teh - TdQ;
			 ThM = ThJ - ThI;
			 ii[WS(rs, 30)] = ThL + ThM;
			 ii[WS(rs, 62)] = ThM - ThL;
		    }
		    {
			 E Ter, Tey, Thz, ThE;
			 Ter = Ten + Teq;
			 Tey = Teu + Tex;
			 ri[WS(rs, 38)] = Ter - Tey;
			 ri[WS(rs, 6)] = Ter + Tey;
			 Thz = TeA + TeB;
			 ThE = ThA + ThD;
			 ii[WS(rs, 6)] = Thz + ThE;
			 ii[WS(rs, 38)] = ThE - Thz;
		    }
		    {
			 E Tez, TeC, ThF, ThG;
			 Tez = Ten - Teq;
			 TeC = TeA - TeB;
			 ri[WS(rs, 54)] = Tez - TeC;
			 ri[WS(rs, 22)] = Tez + TeC;
			 ThF = Tex - Teu;
			 ThG = ThD - ThA;
			 ii[WS(rs, 22)] = ThF + ThG;
			 ii[WS(rs, 54)] = ThG - ThF;
		    }
	       }
	       {
		    E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6;
		    E Tfg;
		    {
			 E TeD, TeG, Tfa, Tfb;
			 TeD = TcL + TcO;
			 TeG = KP707106781 * (TeE + TeF);
			 TeH = TeD - TeG;
			 Tf9 = TeD + TeG;
			 {
			      E TeK, TeN, Thl, Tho;
			      TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI);
			      TeN = FMA(KP923879532, TeL, KP382683432 * TeM);
			      TeO = TeK - TeN;
			      Thk = TeK + TeN;
			      Thl = KP707106781 * (TcU + TcZ);
			      Tho = Thm + Thn;
			      Thp = Thl + Tho;
			      Thv = Tho - Thl;
			 }
			 Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ);
			 Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM);
			 Tfc = Tfa + Tfb;
			 Thu = Tfb - Tfa;
			 {
			      E TeZ, Tfh, Tf2, Tfi, TeY, Tf1;
			      TeY = KP707106781 * (Tee + Ted);
			      TeZ = TeX - TeY;
			      Tfh = TeX + TeY;
			      Tf1 = KP707106781 * (Te0 + Te5);
			      Tf2 = Tf0 - Tf1;
			      Tfi = Tf0 + Tf1;
			      Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ);
			      Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi);
			      Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2);
			      Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh);
			 }
			 {
			      E TeS, Tfe, TeV, Tff, TeR, TeU;
			      TeR = KP707106781 * (TdE + Tdz);
			      TeS = TeQ - TeR;
			      Tfe = TeQ + TeR;
			      TeU = KP707106781 * (TdM + TdN);
			      TeV = TeT - TeU;
			      Tff = TeT + TeU;
			      TeW = FMA(KP555570233, TeS, KP831469612 * TeV);
			      Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff);
			      Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV);
			      Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff);
			 }
		    }
		    {
			 E TeP, Tf4, Tht, Thw;
			 TeP = TeH + TeO;
			 Tf4 = TeW + Tf3;
			 ri[WS(rs, 42)] = TeP - Tf4;
			 ri[WS(rs, 10)] = TeP + Tf4;
			 Tht = Tf6 + Tf7;
			 Thw = Thu + Thv;
			 ii[WS(rs, 10)] = Tht + Thw;
			 ii[WS(rs, 42)] = Thw - Tht;
		    }
		    {
			 E Tf5, Tf8, Thx, Thy;
			 Tf5 = TeH - TeO;
			 Tf8 = Tf6 - Tf7;
			 ri[WS(rs, 58)] = Tf5 - Tf8;
			 ri[WS(rs, 26)] = Tf5 + Tf8;
			 Thx = Tf3 - TeW;
			 Thy = Thv - Thu;
			 ii[WS(rs, 26)] = Thx + Thy;
			 ii[WS(rs, 58)] = Thy - Thx;
		    }
		    {
			 E Tfd, Tfk, Thj, Thq;
			 Tfd = Tf9 + Tfc;
			 Tfk = Tfg + Tfj;
			 ri[WS(rs, 34)] = Tfd - Tfk;
			 ri[WS(rs, 2)] = Tfd + Tfk;
			 Thj = Tfm + Tfn;
			 Thq = Thk + Thp;
			 ii[WS(rs, 2)] = Thj + Thq;
			 ii[WS(rs, 34)] = Thq - Thj;
		    }
		    {
			 E Tfl, Tfo, Thr, Ths;
			 Tfl = Tf9 - Tfc;
			 Tfo = Tfm - Tfn;
			 ri[WS(rs, 50)] = Tfl - Tfo;
			 ri[WS(rs, 18)] = Tfl + Tfo;
			 Thr = Tfj - Tfg;
			 Ths = Thp - Thk;
			 ii[WS(rs, 18)] = Thr + Ths;
			 ii[WS(rs, 50)] = Ths - Thr;
		    }
	       }
	       {
		    E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v;
		    E T9H;
		    {
			 E T6n, T6K, TiB, TiC;
			 T6n = T6b - T6m;
			 T6K = T6y - T6J;
			 T6L = T6n - T6K;
			 T9x = T6n + T6K;
			 TiB = T9P - T9O;
			 TiC = Tin - Tim;
			 TiD = TiB + TiC;
			 TiJ = TiC - TiB;
		    }
		    {
			 E T7c, T9y, T7D, T9z;
			 {
			      E T72, T7b, T7t, T7C;
			      T72 = T6Q - T71;
			      T7b = T77 - T7a;
			      T7c = FNMS(KP980785280, T7b, KP195090322 * T72);
			      T9y = FMA(KP980785280, T72, KP195090322 * T7b);
			      T7t = T7h - T7s;
			      T7C = T7y - T7B;
			      T7D = FMA(KP195090322, T7t, KP980785280 * T7C);
			      T9z = FNMS(KP980785280, T7t, KP195090322 * T7C);
			 }
			 T7E = T7c - T7D;
			 TiI = T9z - T9y;
			 T9A = T9y + T9z;
			 TiA = T7c + T7D;
		    }
		    {
			 E T8k, T9C, T8x, T9D;
			 {
			      E T7W, T8j, T8t, T8w;
			      T7W = T7K - T7V;
			      T8j = T87 - T8i;
			      T8k = T7W - T8j;
			      T9C = T7W + T8j;
			      T8t = T8p - T8s;
			      T8w = T8u - T8v;
			      T8x = T8t - T8w;
			      T9D = T8t + T8w;
			 }
			 T8y = FMA(KP995184726, T8k, KP098017140 * T8x);
			 T9K = FNMS(KP634393284, T9D, KP773010453 * T9C);
			 T9u = FNMS(KP995184726, T8x, KP098017140 * T8k);
			 T9E = FMA(KP634393284, T9C, KP773010453 * T9D);
		    }
		    {
			 E T9d, T9F, T9q, T9G;
			 {
			      E T8P, T9c, T9m, T9p;
			      T8P = T8D - T8O;
			      T9c = T90 - T9b;
			      T9d = T8P - T9c;
			      T9F = T8P + T9c;
			      T9m = T9i - T9l;
			      T9p = T9n - T9o;
			      T9q = T9m - T9p;
			      T9G = T9m + T9p;
			 }
			 T9r = FNMS(KP995184726, T9q, KP098017140 * T9d);
			 T9L = FMA(KP773010453, T9G, KP634393284 * T9F);
			 T9v = FMA(KP098017140, T9q, KP995184726 * T9d);
			 T9H = FNMS(KP634393284, T9G, KP773010453 * T9F);
		    }
		    {
			 E T7F, T9s, TiH, TiK;
			 T7F = T6L + T7E;
			 T9s = T8y + T9r;
			 ri[WS(rs, 47)] = T7F - T9s;
			 ri[WS(rs, 15)] = T7F + T9s;
			 TiH = T9u + T9v;
			 TiK = TiI + TiJ;
			 ii[WS(rs, 15)] = TiH + TiK;
			 ii[WS(rs, 47)] = TiK - TiH;
		    }
		    {
			 E T9t, T9w, TiL, TiM;
			 T9t = T6L - T7E;
			 T9w = T9u - T9v;
			 ri[WS(rs, 63)] = T9t - T9w;
			 ri[WS(rs, 31)] = T9t + T9w;
			 TiL = T9r - T8y;
			 TiM = TiJ - TiI;
			 ii[WS(rs, 31)] = TiL + TiM;
			 ii[WS(rs, 63)] = TiM - TiL;
		    }
		    {
			 E T9B, T9I, Tiz, TiE;
			 T9B = T9x + T9A;
			 T9I = T9E + T9H;
			 ri[WS(rs, 39)] = T9B - T9I;
			 ri[WS(rs, 7)] = T9B + T9I;
			 Tiz = T9K + T9L;
			 TiE = TiA + TiD;
			 ii[WS(rs, 7)] = Tiz + TiE;
			 ii[WS(rs, 39)] = TiE - Tiz;
		    }
		    {
			 E T9J, T9M, TiF, TiG;
			 T9J = T9x - T9A;
			 T9M = T9K - T9L;
			 ri[WS(rs, 55)] = T9J - T9M;
			 ri[WS(rs, 23)] = T9J + T9M;
			 TiF = T9H - T9E;
			 TiG = TiD - TiA;
			 ii[WS(rs, 23)] = TiF + TiG;
			 ii[WS(rs, 55)] = TiG - TiF;
		    }
	       }
	       {
		    E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH;
		    E TbT;
		    {
			 E TaD, TaK, Ti7, Ti8;
			 TaD = Taz - TaC;
			 TaK = TaG - TaJ;
			 TaL = TaD - TaK;
			 TbJ = TaD + TaK;
			 Ti7 = Tc1 - Tc0;
			 Ti8 = ThT - ThQ;
			 Ti9 = Ti7 + Ti8;
			 Tif = Ti8 - Ti7;
		    }
		    {
			 E TaS, TbK, TaZ, TbL;
			 {
			      E TaO, TaR, TaV, TaY;
			      TaO = TaM - TaN;
			      TaR = TaP - TaQ;
			      TaS = FNMS(KP831469612, TaR, KP555570233 * TaO);
			      TbK = FMA(KP555570233, TaR, KP831469612 * TaO);
			      TaV = TaT - TaU;
			      TaY = TaW - TaX;
			      TaZ = FMA(KP831469612, TaV, KP555570233 * TaY);
			      TbL = FNMS(KP831469612, TaY, KP555570233 * TaV);
			 }
			 Tb0 = TaS - TaZ;
			 Tie = TbL - TbK;
			 TbM = TbK + TbL;
			 Ti6 = TaS + TaZ;
		    }
		    {
			 E Tbc, TbO, Tbj, TbP;
			 {
			      E Tb4, Tbb, Tbf, Tbi;
			      Tb4 = Tb2 - Tb3;
			      Tbb = Tb7 - Tba;
			      Tbc = Tb4 - Tbb;
			      TbO = Tb4 + Tbb;
			      Tbf = Tbd - Tbe;
			      Tbi = Tbg - Tbh;
			      Tbj = Tbf - Tbi;
			      TbP = Tbf + Tbi;
			 }
			 Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj);
			 TbW = FNMS(KP471396736, TbP, KP881921264 * TbO);
			 TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc);
			 TbQ = FMA(KP471396736, TbO, KP881921264 * TbP);
		    }
		    {
			 E Tbv, TbR, TbC, TbS;
			 {
			      E Tbn, Tbu, Tby, TbB;
			      Tbn = Tbl - Tbm;
			      Tbu = Tbq - Tbt;
			      Tbv = Tbn - Tbu;
			      TbR = Tbn + Tbu;
			      Tby = Tbw - Tbx;
			      TbB = Tbz - TbA;
			      TbC = Tby - TbB;
			      TbS = Tby + TbB;
			 }
			 TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv);
			 TbX = FMA(KP881921264, TbS, KP471396736 * TbR);
			 TbH = FMA(KP290284677, TbC, KP956940335 * Tbv);
			 TbT = FNMS(KP471396736, TbS, KP881921264 * TbR);
		    }
		    {
			 E Tb1, TbE, Tid, Tig;
			 Tb1 = TaL + Tb0;
			 TbE = Tbk + TbD;
			 ri[WS(rs, 45)] = Tb1 - TbE;
			 ri[WS(rs, 13)] = Tb1 + TbE;
			 Tid = TbG + TbH;
			 Tig = Tie + Tif;
			 ii[WS(rs, 13)] = Tid + Tig;
			 ii[WS(rs, 45)] = Tig - Tid;
		    }
		    {
			 E TbF, TbI, Tih, Tii;
			 TbF = TaL - Tb0;
			 TbI = TbG - TbH;
			 ri[WS(rs, 61)] = TbF - TbI;
			 ri[WS(rs, 29)] = TbF + TbI;
			 Tih = TbD - Tbk;
			 Tii = Tif - Tie;
			 ii[WS(rs, 29)] = Tih + Tii;
			 ii[WS(rs, 61)] = Tii - Tih;
		    }
		    {
			 E TbN, TbU, Ti5, Tia;
			 TbN = TbJ + TbM;
			 TbU = TbQ + TbT;
			 ri[WS(rs, 37)] = TbN - TbU;
			 ri[WS(rs, 5)] = TbN + TbU;
			 Ti5 = TbW + TbX;
			 Tia = Ti6 + Ti9;
			 ii[WS(rs, 5)] = Ti5 + Tia;
			 ii[WS(rs, 37)] = Tia - Ti5;
		    }
		    {
			 E TbV, TbY, Tib, Tic;
			 TbV = TbJ - TbM;
			 TbY = TbW - TbX;
			 ri[WS(rs, 53)] = TbV - TbY;
			 ri[WS(rs, 21)] = TbV + TbY;
			 Tib = TbT - TbQ;
			 Tic = Ti9 - Ti6;
			 ii[WS(rs, 21)] = Tib + Tic;
			 ii[WS(rs, 53)] = Tic - Tib;
		    }
	       }
	       {
		    E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct;
		    E TcF;
		    {
			 E TbZ, Tc2, ThP, ThU;
			 TbZ = Taz + TaC;
			 Tc2 = Tc0 + Tc1;
			 Tc3 = TbZ - Tc2;
			 Tcv = TbZ + Tc2;
			 ThP = TaG + TaJ;
			 ThU = ThQ + ThT;
			 ThV = ThP + ThU;
			 Ti1 = ThU - ThP;
		    }
		    {
			 E Tc6, Tcw, Tc9, Tcx;
			 {
			      E Tc4, Tc5, Tc7, Tc8;
			      Tc4 = TaM + TaN;
			      Tc5 = TaP + TaQ;
			      Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4);
			      Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4);
			      Tc7 = TaT + TaU;
			      Tc8 = TaW + TaX;
			      Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8);
			      Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7);
			 }
			 Tca = Tc6 - Tc9;
			 Ti0 = Tcx - Tcw;
			 Tcy = Tcw + Tcx;
			 ThO = Tc6 + Tc9;
		    }
		    {
			 E Tce, TcA, Tch, TcB;
			 {
			      E Tcc, Tcd, Tcf, Tcg;
			      Tcc = Tbd + Tbe;
			      Tcd = Tba + Tb7;
			      Tce = Tcc - Tcd;
			      TcA = Tcc + Tcd;
			      Tcf = Tb2 + Tb3;
			      Tcg = Tbg + Tbh;
			      Tch = Tcf - Tcg;
			      TcB = Tcf + Tcg;
			 }
			 Tci = FMA(KP634393284, Tce, KP773010453 * Tch);
			 TcI = FNMS(KP098017140, TcA, KP995184726 * TcB);
			 Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch);
			 TcC = FMA(KP995184726, TcA, KP098017140 * TcB);
		    }
		    {
			 E Tcl, TcD, Tco, TcE;
			 {
			      E Tcj, Tck, Tcm, Tcn;
			      Tcj = Tbl + Tbm;
			      Tck = TbA + Tbz;
			      Tcl = Tcj - Tck;
			      TcD = Tcj + Tck;
			      Tcm = Tbw + Tbx;
			      Tcn = Tbq + Tbt;
			      Tco = Tcm - Tcn;
			      TcE = Tcm + Tcn;
			 }
			 Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl);
			 TcJ = FMA(KP098017140, TcD, KP995184726 * TcE);
			 Tct = FMA(KP773010453, Tcl, KP634393284 * Tco);
			 TcF = FNMS(KP098017140, TcE, KP995184726 * TcD);
		    }
		    {
			 E Tcb, Tcq, ThZ, Ti2;
			 Tcb = Tc3 + Tca;
			 Tcq = Tci + Tcp;
			 ri[WS(rs, 41)] = Tcb - Tcq;
			 ri[WS(rs, 9)] = Tcb + Tcq;
			 ThZ = Tcs + Tct;
			 Ti2 = Ti0 + Ti1;
			 ii[WS(rs, 9)] = ThZ + Ti2;
			 ii[WS(rs, 41)] = Ti2 - ThZ;
		    }
		    {
			 E Tcr, Tcu, Ti3, Ti4;
			 Tcr = Tc3 - Tca;
			 Tcu = Tcs - Tct;
			 ri[WS(rs, 57)] = Tcr - Tcu;
			 ri[WS(rs, 25)] = Tcr + Tcu;
			 Ti3 = Tcp - Tci;
			 Ti4 = Ti1 - Ti0;
			 ii[WS(rs, 25)] = Ti3 + Ti4;
			 ii[WS(rs, 57)] = Ti4 - Ti3;
		    }
		    {
			 E Tcz, TcG, ThN, ThW;
			 Tcz = Tcv + Tcy;
			 TcG = TcC + TcF;
			 ri[WS(rs, 33)] = Tcz - TcG;
			 ri[WS(rs, 1)] = Tcz + TcG;
			 ThN = TcI + TcJ;
			 ThW = ThO + ThV;
			 ii[WS(rs, 1)] = ThN + ThW;
			 ii[WS(rs, 33)] = ThW - ThN;
		    }
		    {
			 E TcH, TcK, ThX, ThY;
			 TcH = Tcv - Tcy;
			 TcK = TcI - TcJ;
			 ri[WS(rs, 49)] = TcH - TcK;
			 ri[WS(rs, 17)] = TcH + TcK;
			 ThX = TcF - TcC;
			 ThY = ThV - ThO;
			 ii[WS(rs, 17)] = ThX + ThY;
			 ii[WS(rs, 49)] = ThY - ThX;
		    }
	       }
	       {
		    E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah;
		    E Tat;
		    {
			 E T9N, T9Q, Til, Tio;
			 T9N = T6b + T6m;
			 T9Q = T9O + T9P;
			 T9R = T9N - T9Q;
			 Taj = T9N + T9Q;
			 Til = T6y + T6J;
			 Tio = Tim + Tin;
			 Tip = Til + Tio;
			 Tiv = Tio - Til;
		    }
		    {
			 E T9U, Tak, T9X, Tal;
			 {
			      E T9S, T9T, T9V, T9W;
			      T9S = T6Q + T71;
			      T9T = T77 + T7a;
			      T9U = FNMS(KP555570233, T9T, KP831469612 * T9S);
			      Tak = FMA(KP555570233, T9S, KP831469612 * T9T);
			      T9V = T7h + T7s;
			      T9W = T7y + T7B;
			      T9X = FMA(KP831469612, T9V, KP555570233 * T9W);
			      Tal = FNMS(KP555570233, T9V, KP831469612 * T9W);
			 }
			 T9Y = T9U - T9X;
			 Tiu = Tal - Tak;
			 Tam = Tak + Tal;
			 Tik = T9U + T9X;
		    }
		    {
			 E Ta2, Tao, Ta5, Tap;
			 {
			      E Ta0, Ta1, Ta3, Ta4;
			      Ta0 = T8p + T8s;
			      Ta1 = T8i + T87;
			      Ta2 = Ta0 - Ta1;
			      Tao = Ta0 + Ta1;
			      Ta3 = T7K + T7V;
			      Ta4 = T8u + T8v;
			      Ta5 = Ta3 - Ta4;
			      Tap = Ta3 + Ta4;
			 }
			 Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5);
			 Taw = FNMS(KP290284677, Tao, KP956940335 * Tap);
			 Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5);
			 Taq = FMA(KP956940335, Tao, KP290284677 * Tap);
		    }
		    {
			 E Ta9, Tar, Tac, Tas;
			 {
			      E Ta7, Ta8, Taa, Tab;
			      Ta7 = T8D + T8O;
			      Ta8 = T9o + T9n;
			      Ta9 = Ta7 - Ta8;
			      Tar = Ta7 + Ta8;
			      Taa = T9i + T9l;
			      Tab = T90 + T9b;
			      Tac = Taa - Tab;
			      Tas = Taa + Tab;
			 }
			 Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9);
			 Tax = FMA(KP290284677, Tar, KP956940335 * Tas);
			 Tah = FMA(KP881921264, Ta9, KP471396736 * Tac);
			 Tat = FNMS(KP290284677, Tas, KP956940335 * Tar);
		    }
		    {
			 E T9Z, Tae, Tit, Tiw;
			 T9Z = T9R + T9Y;
			 Tae = Ta6 + Tad;
			 ri[WS(rs, 43)] = T9Z - Tae;
			 ri[WS(rs, 11)] = T9Z + Tae;
			 Tit = Tag + Tah;
			 Tiw = Tiu + Tiv;
			 ii[WS(rs, 11)] = Tit + Tiw;
			 ii[WS(rs, 43)] = Tiw - Tit;
		    }
		    {
			 E Taf, Tai, Tix, Tiy;
			 Taf = T9R - T9Y;
			 Tai = Tag - Tah;
			 ri[WS(rs, 59)] = Taf - Tai;
			 ri[WS(rs, 27)] = Taf + Tai;
			 Tix = Tad - Ta6;
			 Tiy = Tiv - Tiu;
			 ii[WS(rs, 27)] = Tix + Tiy;
			 ii[WS(rs, 59)] = Tiy - Tix;
		    }
		    {
			 E Tan, Tau, Tij, Tiq;
			 Tan = Taj + Tam;
			 Tau = Taq + Tat;
			 ri[WS(rs, 35)] = Tan - Tau;
			 ri[WS(rs, 3)] = Tan + Tau;
			 Tij = Taw + Tax;
			 Tiq = Tik + Tip;
			 ii[WS(rs, 3)] = Tij + Tiq;
			 ii[WS(rs, 35)] = Tiq - Tij;
		    }
		    {
			 E Tav, Tay, Tir, Tis;
			 Tav = Taj - Tam;
			 Tay = Taw - Tax;
			 ri[WS(rs, 51)] = Tav - Tay;
			 ri[WS(rs, 19)] = Tav + Tay;
			 Tir = Tat - Taq;
			 Tis = Tip - Tik;
			 ii[WS(rs, 19)] = Tir + Tis;
			 ii[WS(rs, 51)] = Tis - Tir;
		    }
	       }
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 0, 64},
     {TW_NEXT, 1, 0}
};

static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, {808, 270, 230, 0}, 0, 0, 0 };

void X(codelet_t1_64) (planner *p) {
     X(kdft_dit_register) (p, t1_64, &desc);
}
#endif				/* HAVE_FMA */