view src/fftw-3.3.8/dft/simd/common/n2bv_16.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents bd3cc4d1df30
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Thu May 24 08:05:12 EDT 2018 */

#include "dft/codelet-dft.h"

#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)

/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 16 -name n2bv_16 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */

/*
 * This function contains 72 FP additions, 34 FP multiplications,
 * (or, 38 additions, 0 multiplications, 34 fused multiply/add),
 * 38 stack variables, 3 constants, and 40 memory accesses
 */
#include "dft/simd/n2b.h"

static void n2bv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
     DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
     DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
     {
	  INT i;
	  const R *xi;
	  R *xo;
	  xi = ii;
	  xo = io;
	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) {
	       V T7, TU, Tz, TH, Tu, TV, TA, TK, Te, TX, TC, TO, Tl, TY, TD;
	       V TR;
	       {
		    V T1, T2, T3, T4, T5, T6;
		    T1 = LD(&(xi[0]), ivs, &(xi[0]));
		    T2 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
		    T3 = VADD(T1, T2);
		    T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
		    T5 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
		    T6 = VADD(T4, T5);
		    T7 = VSUB(T3, T6);
		    TU = VSUB(T4, T5);
		    Tz = VADD(T3, T6);
		    TH = VSUB(T1, T2);
	       }
	       {
		    V Tq, TI, Tt, TJ;
		    {
			 V To, Tp, Tr, Ts;
			 To = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
			 Tp = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
			 Tq = VADD(To, Tp);
			 TI = VSUB(To, Tp);
			 Tr = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
			 Ts = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
			 Tt = VADD(Tr, Ts);
			 TJ = VSUB(Tr, Ts);
		    }
		    Tu = VSUB(Tq, Tt);
		    TV = VSUB(TI, TJ);
		    TA = VADD(Tq, Tt);
		    TK = VADD(TI, TJ);
	       }
	       {
		    V Ta, TM, Td, TN;
		    {
			 V T8, T9, Tb, Tc;
			 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
			 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
			 Ta = VADD(T8, T9);
			 TM = VSUB(T8, T9);
			 Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
			 Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
			 Td = VADD(Tb, Tc);
			 TN = VSUB(Tb, Tc);
		    }
		    Te = VSUB(Ta, Td);
		    TX = VFMA(LDK(KP414213562), TM, TN);
		    TC = VADD(Ta, Td);
		    TO = VFNMS(LDK(KP414213562), TN, TM);
	       }
	       {
		    V Th, TP, Tk, TQ;
		    {
			 V Tf, Tg, Ti, Tj;
			 Tf = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
			 Tg = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
			 Th = VADD(Tf, Tg);
			 TP = VSUB(Tf, Tg);
			 Ti = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
			 Tj = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
			 Tk = VADD(Ti, Tj);
			 TQ = VSUB(Tj, Ti);
		    }
		    Tl = VSUB(Th, Tk);
		    TY = VFMA(LDK(KP414213562), TP, TQ);
		    TD = VADD(Th, Tk);
		    TR = VFNMS(LDK(KP414213562), TQ, TP);
	       }
	       {
		    V T1b, T1c, T1d, T1e;
		    {
			 V TB, TE, TF, TG;
			 TB = VSUB(Tz, TA);
			 TE = VSUB(TC, TD);
			 T1b = VFNMSI(TE, TB);
			 STM2(&(xo[24]), T1b, ovs, &(xo[0]));
			 T1c = VFMAI(TE, TB);
			 STM2(&(xo[8]), T1c, ovs, &(xo[0]));
			 TF = VADD(Tz, TA);
			 TG = VADD(TC, TD);
			 T1d = VSUB(TF, TG);
			 STM2(&(xo[16]), T1d, ovs, &(xo[0]));
			 T1e = VADD(TF, TG);
			 STM2(&(xo[0]), T1e, ovs, &(xo[0]));
		    }
		    {
			 V T1f, T1g, T1h, T1i;
			 {
			      V Tn, Tx, Tw, Ty, Tm, Tv;
			      Tm = VADD(Te, Tl);
			      Tn = VFNMS(LDK(KP707106781), Tm, T7);
			      Tx = VFMA(LDK(KP707106781), Tm, T7);
			      Tv = VSUB(Te, Tl);
			      Tw = VFNMS(LDK(KP707106781), Tv, Tu);
			      Ty = VFMA(LDK(KP707106781), Tv, Tu);
			      T1f = VFNMSI(Tw, Tn);
			      STM2(&(xo[12]), T1f, ovs, &(xo[0]));
			      T1g = VFNMSI(Ty, Tx);
			      STM2(&(xo[28]), T1g, ovs, &(xo[0]));
			      T1h = VFMAI(Tw, Tn);
			      STM2(&(xo[20]), T1h, ovs, &(xo[0]));
			      T1i = VFMAI(Ty, Tx);
			      STM2(&(xo[4]), T1i, ovs, &(xo[0]));
			 }
			 {
			      V TT, T11, T10, T12;
			      {
				   V TL, TS, TW, TZ;
				   TL = VFMA(LDK(KP707106781), TK, TH);
				   TS = VADD(TO, TR);
				   TT = VFNMS(LDK(KP923879532), TS, TL);
				   T11 = VFMA(LDK(KP923879532), TS, TL);
				   TW = VFMA(LDK(KP707106781), TV, TU);
				   TZ = VSUB(TX, TY);
				   T10 = VFNMS(LDK(KP923879532), TZ, TW);
				   T12 = VFMA(LDK(KP923879532), TZ, TW);
			      }
			      {
				   V T1j, T1k, T1l, T1m;
				   T1j = VFNMSI(T10, TT);
				   STM2(&(xo[14]), T1j, ovs, &(xo[2]));
				   STN2(&(xo[12]), T1f, T1j, ovs);
				   T1k = VFMAI(T12, T11);
				   STM2(&(xo[2]), T1k, ovs, &(xo[2]));
				   STN2(&(xo[0]), T1e, T1k, ovs);
				   T1l = VFMAI(T10, TT);
				   STM2(&(xo[18]), T1l, ovs, &(xo[2]));
				   STN2(&(xo[16]), T1d, T1l, ovs);
				   T1m = VFNMSI(T12, T11);
				   STM2(&(xo[30]), T1m, ovs, &(xo[2]));
				   STN2(&(xo[28]), T1g, T1m, ovs);
			      }
			 }
			 {
			      V T15, T19, T18, T1a;
			      {
				   V T13, T14, T16, T17;
				   T13 = VFNMS(LDK(KP707106781), TK, TH);
				   T14 = VADD(TX, TY);
				   T15 = VFNMS(LDK(KP923879532), T14, T13);
				   T19 = VFMA(LDK(KP923879532), T14, T13);
				   T16 = VFNMS(LDK(KP707106781), TV, TU);
				   T17 = VSUB(TO, TR);
				   T18 = VFMA(LDK(KP923879532), T17, T16);
				   T1a = VFNMS(LDK(KP923879532), T17, T16);
			      }
			      {
				   V T1n, T1o, T1p, T1q;
				   T1n = VFMAI(T18, T15);
				   STM2(&(xo[10]), T1n, ovs, &(xo[2]));
				   STN2(&(xo[8]), T1c, T1n, ovs);
				   T1o = VFMAI(T1a, T19);
				   STM2(&(xo[26]), T1o, ovs, &(xo[2]));
				   STN2(&(xo[24]), T1b, T1o, ovs);
				   T1p = VFNMSI(T18, T15);
				   STM2(&(xo[22]), T1p, ovs, &(xo[2]));
				   STN2(&(xo[20]), T1h, T1p, ovs);
				   T1q = VFNMSI(T1a, T19);
				   STM2(&(xo[6]), T1q, ovs, &(xo[2]));
				   STN2(&(xo[4]), T1i, T1q, ovs);
			      }
			 }
		    }
	       }
	  }
     }
     VLEAVE();
}

static const kdft_desc desc = { 16, XSIMD_STRING("n2bv_16"), {38, 0, 34, 0}, &GENUS, 0, 2, 0, 0 };

void XSIMD(codelet_n2bv_16) (planner *p) {
     X(kdft_register) (p, n2bv_16, &desc);
}

#else

/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 16 -name n2bv_16 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */

/*
 * This function contains 72 FP additions, 12 FP multiplications,
 * (or, 68 additions, 8 multiplications, 4 fused multiply/add),
 * 38 stack variables, 3 constants, and 40 memory accesses
 */
#include "dft/simd/n2b.h"

static void n2bv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
     DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
     DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
     {
	  INT i;
	  const R *xi;
	  R *xo;
	  xi = ii;
	  xo = io;
	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) {
	       V Tp, T13, Tu, TY, Tm, T14, Tv, TU, T7, T16, Tx, TN, Te, T17, Ty;
	       V TQ;
	       {
		    V Tn, To, TX, Ts, Tt, TW;
		    Tn = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
		    To = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
		    TX = VADD(Tn, To);
		    Ts = LD(&(xi[0]), ivs, &(xi[0]));
		    Tt = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
		    TW = VADD(Ts, Tt);
		    Tp = VSUB(Tn, To);
		    T13 = VADD(TW, TX);
		    Tu = VSUB(Ts, Tt);
		    TY = VSUB(TW, TX);
	       }
	       {
		    V Ti, TS, Tl, TT;
		    {
			 V Tg, Th, Tj, Tk;
			 Tg = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
			 Th = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
			 Ti = VSUB(Tg, Th);
			 TS = VADD(Tg, Th);
			 Tj = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
			 Tk = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
			 Tl = VSUB(Tj, Tk);
			 TT = VADD(Tj, Tk);
		    }
		    Tm = VMUL(LDK(KP707106781), VSUB(Ti, Tl));
		    T14 = VADD(TS, TT);
		    Tv = VMUL(LDK(KP707106781), VADD(Ti, Tl));
		    TU = VSUB(TS, TT);
	       }
	       {
		    V T3, TL, T6, TM;
		    {
			 V T1, T2, T4, T5;
			 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
			 T2 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
			 T3 = VSUB(T1, T2);
			 TL = VADD(T1, T2);
			 T4 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
			 T5 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
			 T6 = VSUB(T4, T5);
			 TM = VADD(T4, T5);
		    }
		    T7 = VFNMS(LDK(KP382683432), T6, VMUL(LDK(KP923879532), T3));
		    T16 = VADD(TL, TM);
		    Tx = VFMA(LDK(KP382683432), T3, VMUL(LDK(KP923879532), T6));
		    TN = VSUB(TL, TM);
	       }
	       {
		    V Ta, TO, Td, TP;
		    {
			 V T8, T9, Tb, Tc;
			 T8 = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
			 T9 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
			 Ta = VSUB(T8, T9);
			 TO = VADD(T8, T9);
			 Tb = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
			 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
			 Td = VSUB(Tb, Tc);
			 TP = VADD(Tb, Tc);
		    }
		    Te = VFMA(LDK(KP923879532), Ta, VMUL(LDK(KP382683432), Td));
		    T17 = VADD(TO, TP);
		    Ty = VFNMS(LDK(KP382683432), Ta, VMUL(LDK(KP923879532), Td));
		    TQ = VSUB(TO, TP);
	       }
	       {
		    V T1b, T1c, T1d, T1e;
		    {
			 V T15, T18, T19, T1a;
			 T15 = VSUB(T13, T14);
			 T18 = VBYI(VSUB(T16, T17));
			 T1b = VSUB(T15, T18);
			 STM2(&(xo[24]), T1b, ovs, &(xo[0]));
			 T1c = VADD(T15, T18);
			 STM2(&(xo[8]), T1c, ovs, &(xo[0]));
			 T19 = VADD(T13, T14);
			 T1a = VADD(T16, T17);
			 T1d = VSUB(T19, T1a);
			 STM2(&(xo[16]), T1d, ovs, &(xo[0]));
			 T1e = VADD(T19, T1a);
			 STM2(&(xo[0]), T1e, ovs, &(xo[0]));
		    }
		    {
			 V T1f, T1g, T1h, T1i;
			 {
			      V TV, T11, T10, T12, TR, TZ;
			      TR = VMUL(LDK(KP707106781), VSUB(TN, TQ));
			      TV = VBYI(VSUB(TR, TU));
			      T11 = VBYI(VADD(TU, TR));
			      TZ = VMUL(LDK(KP707106781), VADD(TN, TQ));
			      T10 = VSUB(TY, TZ);
			      T12 = VADD(TY, TZ);
			      T1f = VADD(TV, T10);
			      STM2(&(xo[12]), T1f, ovs, &(xo[0]));
			      T1g = VSUB(T12, T11);
			      STM2(&(xo[28]), T1g, ovs, &(xo[0]));
			      T1h = VSUB(T10, TV);
			      STM2(&(xo[20]), T1h, ovs, &(xo[0]));
			      T1i = VADD(T11, T12);
			      STM2(&(xo[4]), T1i, ovs, &(xo[0]));
			 }
			 {
			      V Tr, TB, TA, TC;
			      {
				   V Tf, Tq, Tw, Tz;
				   Tf = VSUB(T7, Te);
				   Tq = VSUB(Tm, Tp);
				   Tr = VBYI(VSUB(Tf, Tq));
				   TB = VBYI(VADD(Tq, Tf));
				   Tw = VSUB(Tu, Tv);
				   Tz = VSUB(Tx, Ty);
				   TA = VSUB(Tw, Tz);
				   TC = VADD(Tw, Tz);
			      }
			      {
				   V T1j, T1k, T1l, T1m;
				   T1j = VADD(Tr, TA);
				   STM2(&(xo[10]), T1j, ovs, &(xo[2]));
				   STN2(&(xo[8]), T1c, T1j, ovs);
				   T1k = VSUB(TC, TB);
				   STM2(&(xo[26]), T1k, ovs, &(xo[2]));
				   STN2(&(xo[24]), T1b, T1k, ovs);
				   T1l = VSUB(TA, Tr);
				   STM2(&(xo[22]), T1l, ovs, &(xo[2]));
				   STN2(&(xo[20]), T1h, T1l, ovs);
				   T1m = VADD(TB, TC);
				   STM2(&(xo[6]), T1m, ovs, &(xo[2]));
				   STN2(&(xo[4]), T1i, T1m, ovs);
			      }
			 }
			 {
			      V TF, TJ, TI, TK;
			      {
				   V TD, TE, TG, TH;
				   TD = VADD(Tu, Tv);
				   TE = VADD(T7, Te);
				   TF = VADD(TD, TE);
				   TJ = VSUB(TD, TE);
				   TG = VADD(Tp, Tm);
				   TH = VADD(Tx, Ty);
				   TI = VBYI(VADD(TG, TH));
				   TK = VBYI(VSUB(TH, TG));
			      }
			      {
				   V T1n, T1o, T1p, T1q;
				   T1n = VSUB(TF, TI);
				   STM2(&(xo[30]), T1n, ovs, &(xo[2]));
				   STN2(&(xo[28]), T1g, T1n, ovs);
				   T1o = VADD(TJ, TK);
				   STM2(&(xo[14]), T1o, ovs, &(xo[2]));
				   STN2(&(xo[12]), T1f, T1o, ovs);
				   T1p = VADD(TF, TI);
				   STM2(&(xo[2]), T1p, ovs, &(xo[2]));
				   STN2(&(xo[0]), T1e, T1p, ovs);
				   T1q = VSUB(TJ, TK);
				   STM2(&(xo[18]), T1q, ovs, &(xo[2]));
				   STN2(&(xo[16]), T1d, T1q, ovs);
			      }
			 }
		    }
	       }
	  }
     }
     VLEAVE();
}

static const kdft_desc desc = { 16, XSIMD_STRING("n2bv_16"), {68, 8, 4, 0}, &GENUS, 0, 2, 0, 0 };

void XSIMD(codelet_n2bv_16) (planner *p) {
     X(kdft_register) (p, n2bv_16, &desc);
}

#endif