view src/fftw-3.3.8/dft/simd/common/t1bv_7.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000 (2019-11-19)
parents
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Thu May 24 08:05:57 EDT 2018 */

#include "dft/codelet-dft.h"

#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)

/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1bv_7 -include dft/simd/t1b.h -sign 1 */

/*
 * This function contains 36 FP additions, 36 FP multiplications,
 * (or, 15 additions, 15 multiplications, 21 fused multiply/add),
 * 30 stack variables, 6 constants, and 14 memory accesses
 */
#include "dft/simd/t1b.h"

static void t1bv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DVK(KP801937735, +0.801937735804838252472204639014890102331838324);
     DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
     DVK(KP554958132, +0.554958132087371191422194871006410481067288862);
     DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
     DVK(KP692021471, +0.692021471630095869627814897002069140197260599);
     DVK(KP356895867, +0.356895867892209443894399510021300583399127187);
     {
	  INT m;
	  R *x;
	  x = ii;
	  for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) {
	       V T1, Tk, Tm, Tl, T6, Tg, Tb, Th, Tu, Tp;
	       T1 = LD(&(x[0]), ms, &(x[0]));
	       {
		    V T3, T5, Tf, Td, Ta, T8;
		    {
			 V T2, T4, Te, Tc, T9, T7;
			 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
			 T3 = BYTW(&(W[0]), T2);
			 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
			 T5 = BYTW(&(W[TWVL * 10]), T4);
			 Te = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
			 Tf = BYTW(&(W[TWVL * 6]), Te);
			 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
			 Td = BYTW(&(W[TWVL * 4]), Tc);
			 T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
			 Ta = BYTW(&(W[TWVL * 8]), T9);
			 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
			 T8 = BYTW(&(W[TWVL * 2]), T7);
		    }
		    Tk = VSUB(Td, Tf);
		    Tm = VSUB(T3, T5);
		    Tl = VSUB(T8, Ta);
		    T6 = VADD(T3, T5);
		    Tg = VADD(Td, Tf);
		    Tb = VADD(T8, Ta);
		    Th = VFNMS(LDK(KP356895867), Tg, Tb);
		    Tu = VFNMS(LDK(KP356895867), Tb, T6);
		    Tp = VFNMS(LDK(KP356895867), T6, Tg);
	       }
	       ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0]));
	       {
		    V Tw, Ty, Tv, Tx;
		    Tv = VFNMS(LDK(KP692021471), Tu, Tg);
		    Tw = VFNMS(LDK(KP900968867), Tv, T1);
		    Tx = VFMA(LDK(KP554958132), Tk, Tm);
		    Ty = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), Tx, Tl));
		    ST(&(x[WS(rs, 1)]), VFMAI(Ty, Tw), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 6)]), VFNMSI(Ty, Tw), ms, &(x[0]));
	       }
	       {
		    V Tj, To, Ti, Tn;
		    Ti = VFNMS(LDK(KP692021471), Th, T6);
		    Tj = VFNMS(LDK(KP900968867), Ti, T1);
		    Tn = VFNMS(LDK(KP554958132), Tm, Tl);
		    To = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tn, Tk));
		    ST(&(x[WS(rs, 3)]), VFMAI(To, Tj), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 4)]), VFNMSI(To, Tj), ms, &(x[0]));
	       }
	       {
		    V Tr, Tt, Tq, Ts;
		    Tq = VFNMS(LDK(KP692021471), Tp, Tb);
		    Tr = VFNMS(LDK(KP900968867), Tq, T1);
		    Ts = VFMA(LDK(KP554958132), Tl, Tk);
		    Tt = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Ts, Tm));
		    ST(&(x[WS(rs, 2)]), VFMAI(Tt, Tr), ms, &(x[0]));
		    ST(&(x[WS(rs, 5)]), VFNMSI(Tt, Tr), ms, &(x[WS(rs, 1)]));
	       }
	  }
     }
     VLEAVE();
}

static const tw_instr twinstr[] = {
     VTW(0, 1),
     VTW(0, 2),
     VTW(0, 3),
     VTW(0, 4),
     VTW(0, 5),
     VTW(0, 6),
     {TW_NEXT, VL, 0}
};

static const ct_desc desc = { 7, XSIMD_STRING("t1bv_7"), twinstr, &GENUS, {15, 15, 21, 0}, 0, 0, 0 };

void XSIMD(codelet_t1bv_7) (planner *p) {
     X(kdft_dit_register) (p, t1bv_7, &desc);
}
#else

/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1bv_7 -include dft/simd/t1b.h -sign 1 */

/*
 * This function contains 36 FP additions, 30 FP multiplications,
 * (or, 24 additions, 18 multiplications, 12 fused multiply/add),
 * 21 stack variables, 6 constants, and 14 memory accesses
 */
#include "dft/simd/t1b.h"

static void t1bv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DVK(KP222520933, +0.222520933956314404288902564496794759466355569);
     DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
     DVK(KP623489801, +0.623489801858733530525004884004239810632274731);
     DVK(KP433883739, +0.433883739117558120475768332848358754609990728);
     DVK(KP781831482, +0.781831482468029808708444526674057750232334519);
     DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
     {
	  INT m;
	  R *x;
	  x = ii;
	  for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) {
	       V Th, Tf, Ti, T5, Tk, Ta, Tj, To, Tp;
	       Th = LD(&(x[0]), ms, &(x[0]));
	       {
		    V Tc, Te, Tb, Td;
		    Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
		    Tc = BYTW(&(W[TWVL * 2]), Tb);
		    Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
		    Te = BYTW(&(W[TWVL * 8]), Td);
		    Tf = VSUB(Tc, Te);
		    Ti = VADD(Tc, Te);
	       }
	       {
		    V T2, T4, T1, T3;
		    T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
		    T2 = BYTW(&(W[0]), T1);
		    T3 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
		    T4 = BYTW(&(W[TWVL * 10]), T3);
		    T5 = VSUB(T2, T4);
		    Tk = VADD(T2, T4);
	       }
	       {
		    V T7, T9, T6, T8;
		    T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
		    T7 = BYTW(&(W[TWVL * 4]), T6);
		    T8 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
		    T9 = BYTW(&(W[TWVL * 6]), T8);
		    Ta = VSUB(T7, T9);
		    Tj = VADD(T7, T9);
	       }
	       ST(&(x[0]), VADD(Th, VADD(Tk, VADD(Ti, Tj))), ms, &(x[0]));
	       To = VBYI(VFNMS(LDK(KP781831482), Ta, VFNMS(LDK(KP433883739), Tf, VMUL(LDK(KP974927912), T5))));
	       Tp = VFMA(LDK(KP623489801), Tj, VFNMS(LDK(KP900968867), Ti, VFNMS(LDK(KP222520933), Tk, Th)));
	       ST(&(x[WS(rs, 2)]), VADD(To, Tp), ms, &(x[0]));
	       ST(&(x[WS(rs, 5)]), VSUB(Tp, To), ms, &(x[WS(rs, 1)]));
	       {
		    V Tg, Tl, Tm, Tn;
		    Tg = VBYI(VFMA(LDK(KP433883739), T5, VFNMS(LDK(KP781831482), Tf, VMUL(LDK(KP974927912), Ta))));
		    Tl = VFMA(LDK(KP623489801), Ti, VFNMS(LDK(KP222520933), Tj, VFNMS(LDK(KP900968867), Tk, Th)));
		    ST(&(x[WS(rs, 3)]), VADD(Tg, Tl), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 4)]), VSUB(Tl, Tg), ms, &(x[0]));
		    Tm = VBYI(VFMA(LDK(KP781831482), T5, VFMA(LDK(KP974927912), Tf, VMUL(LDK(KP433883739), Ta))));
		    Tn = VFMA(LDK(KP623489801), Tk, VFNMS(LDK(KP900968867), Tj, VFNMS(LDK(KP222520933), Ti, Th)));
		    ST(&(x[WS(rs, 1)]), VADD(Tm, Tn), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 6)]), VSUB(Tn, Tm), ms, &(x[0]));
	       }
	  }
     }
     VLEAVE();
}

static const tw_instr twinstr[] = {
     VTW(0, 1),
     VTW(0, 2),
     VTW(0, 3),
     VTW(0, 4),
     VTW(0, 5),
     VTW(0, 6),
     {TW_NEXT, VL, 0}
};

static const ct_desc desc = { 7, XSIMD_STRING("t1bv_7"), twinstr, &GENUS, {24, 18, 12, 0}, 0, 0, 0 };

void XSIMD(codelet_t1bv_7) (planner *p) {
     X(kdft_dit_register) (p, t1bv_7, &desc);
}
#endif