view win64-msvc/include/kj/units.h @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 0f2d93caa50c
children
line wrap: on
line source
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

// This file contains types which are intended to help detect incorrect usage at compile
// time, but should then be optimized down to basic primitives (usually, integers) by the
// compiler.

#ifndef KJ_UNITS_H_
#define KJ_UNITS_H_

#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif

#include "common.h"
#include <inttypes.h>

namespace kj {

// =======================================================================================
// IDs

template <typename UnderlyingType, typename Label>
struct Id {
  // A type-safe numeric ID.  `UnderlyingType` is the underlying integer representation.  `Label`
  // distinguishes this Id from other Id types.  Sample usage:
  //
  //   class Foo;
  //   typedef Id<uint, Foo> FooId;
  //
  //   class Bar;
  //   typedef Id<uint, Bar> BarId;
  //
  // You can now use the FooId and BarId types without any possibility of accidentally using a
  // FooId when you really wanted a BarId or vice-versa.

  UnderlyingType value;

  inline constexpr Id(): value(0) {}
  inline constexpr explicit Id(int value): value(value) {}

  inline constexpr bool operator==(const Id& other) const { return value == other.value; }
  inline constexpr bool operator!=(const Id& other) const { return value != other.value; }
  inline constexpr bool operator<=(const Id& other) const { return value <= other.value; }
  inline constexpr bool operator>=(const Id& other) const { return value >= other.value; }
  inline constexpr bool operator< (const Id& other) const { return value <  other.value; }
  inline constexpr bool operator> (const Id& other) const { return value >  other.value; }
};

// =======================================================================================
// Quantity and UnitRatio -- implement unit analysis via the type system

struct Unsafe_ {};
constexpr Unsafe_ unsafe = Unsafe_();
// Use as a parameter to constructors that are unsafe to indicate that you really do mean it.

template <uint64_t maxN, typename T>
class Bounded;
template <uint value>
class BoundedConst;

template <typename T> constexpr bool isIntegral() { return false; }
template <> constexpr bool isIntegral<char>() { return true; }
template <> constexpr bool isIntegral<signed char>() { return true; }
template <> constexpr bool isIntegral<short>() { return true; }
template <> constexpr bool isIntegral<int>() { return true; }
template <> constexpr bool isIntegral<long>() { return true; }
template <> constexpr bool isIntegral<long long>() { return true; }
template <> constexpr bool isIntegral<unsigned char>() { return true; }
template <> constexpr bool isIntegral<unsigned short>() { return true; }
template <> constexpr bool isIntegral<unsigned int>() { return true; }
template <> constexpr bool isIntegral<unsigned long>() { return true; }
template <> constexpr bool isIntegral<unsigned long long>() { return true; }

template <typename T>
struct IsIntegralOrBounded_ { static constexpr bool value = isIntegral<T>(); };
template <uint64_t m, typename T>
struct IsIntegralOrBounded_<Bounded<m, T>> { static constexpr bool value = true; };
template <uint v>
struct IsIntegralOrBounded_<BoundedConst<v>> { static constexpr bool value = true; };

template <typename T>
inline constexpr bool isIntegralOrBounded() { return IsIntegralOrBounded_<T>::value; }

template <typename Number, typename Unit1, typename Unit2>
class UnitRatio {
  // A multiplier used to convert Quantities of one unit to Quantities of another unit.  See
  // Quantity, below.
  //
  // Construct this type by dividing one Quantity by another of a different unit.  Use this type
  // by multiplying it by a Quantity, or dividing a Quantity by it.

  static_assert(isIntegralOrBounded<Number>(),
      "Underlying type for UnitRatio must be integer.");

public:
  inline UnitRatio() {}

  constexpr UnitRatio(Number unit1PerUnit2, decltype(unsafe)): unit1PerUnit2(unit1PerUnit2) {}
  // This constructor was intended to be private, but GCC complains about it being private in a
  // bunch of places that don't appear to even call it, so I made it public.  Oh well.

  template <typename OtherNumber>
  inline constexpr UnitRatio(const UnitRatio<OtherNumber, Unit1, Unit2>& other)
      : unit1PerUnit2(other.unit1PerUnit2) {}

  template <typename OtherNumber>
  inline constexpr UnitRatio<decltype(Number()+OtherNumber()), Unit1, Unit2>
      operator+(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
    return UnitRatio<decltype(Number()+OtherNumber()), Unit1, Unit2>(
        unit1PerUnit2 + other.unit1PerUnit2, unsafe);
  }
  template <typename OtherNumber>
  inline constexpr UnitRatio<decltype(Number()-OtherNumber()), Unit1, Unit2>
      operator-(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
    return UnitRatio<decltype(Number()-OtherNumber()), Unit1, Unit2>(
        unit1PerUnit2 - other.unit1PerUnit2, unsafe);
  }

  template <typename OtherNumber, typename Unit3>
  inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>
      operator*(UnitRatio<OtherNumber, Unit3, Unit1> other) const {
    // U1 / U2 * U3 / U1 = U3 / U2
    return UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>(
        unit1PerUnit2 * other.unit1PerUnit2, unsafe);
  }
  template <typename OtherNumber, typename Unit3>
  inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>
      operator*(UnitRatio<OtherNumber, Unit2, Unit3> other) const {
    // U1 / U2 * U2 / U3 = U1 / U3
    return UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>(
        unit1PerUnit2 * other.unit1PerUnit2, unsafe);
  }

  template <typename OtherNumber, typename Unit3>
  inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>
      operator/(UnitRatio<OtherNumber, Unit1, Unit3> other) const {
    // (U1 / U2) / (U1 / U3) = U3 / U2
    return UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>(
        unit1PerUnit2 / other.unit1PerUnit2, unsafe);
  }
  template <typename OtherNumber, typename Unit3>
  inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>
      operator/(UnitRatio<OtherNumber, Unit3, Unit2> other) const {
    // (U1 / U2) / (U3 / U2) = U1 / U3
    return UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>(
        unit1PerUnit2 / other.unit1PerUnit2, unsafe);
  }

  template <typename OtherNumber>
  inline decltype(Number() / OtherNumber())
      operator/(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
    return unit1PerUnit2 / other.unit1PerUnit2;
  }

  inline bool operator==(UnitRatio other) const { return unit1PerUnit2 == other.unit1PerUnit2; }
  inline bool operator!=(UnitRatio other) const { return unit1PerUnit2 != other.unit1PerUnit2; }

private:
  Number unit1PerUnit2;

  template <typename OtherNumber, typename OtherUnit>
  friend class Quantity;
  template <typename OtherNumber, typename OtherUnit1, typename OtherUnit2>
  friend class UnitRatio;

  template <typename N1, typename N2, typename U1, typename U2, typename>
  friend inline constexpr UnitRatio<decltype(N1() * N2()), U1, U2>
      operator*(N1, UnitRatio<N2, U1, U2>);
};

template <typename N1, typename N2, typename U1, typename U2,
          typename = EnableIf<isIntegralOrBounded<N1>() && isIntegralOrBounded<N2>()>>
inline constexpr UnitRatio<decltype(N1() * N2()), U1, U2>
    operator*(N1 n, UnitRatio<N2, U1, U2> r) {
  return UnitRatio<decltype(N1() * N2()), U1, U2>(n * r.unit1PerUnit2, unsafe);
}

template <typename Number, typename Unit>
class Quantity {
  // A type-safe numeric quantity, specified in terms of some unit.  Two Quantities cannot be used
  // in arithmetic unless they use the same unit.  The `Unit` type parameter is only used to prevent
  // accidental mixing of units; this type is never instantiated and can very well be incomplete.
  // `Number` is the underlying primitive numeric type.
  //
  // Quantities support most basic arithmetic operators, intelligently handling units, and
  // automatically casting the underlying type in the same way that the compiler would.
  //
  // To convert a primitive number to a Quantity, multiply it by unit<Quantity<N, U>>().
  // To convert a Quantity to a primitive number, divide it by unit<Quantity<N, U>>().
  // To convert a Quantity of one unit to another unit, multiply or divide by a UnitRatio.
  //
  // The Quantity class is not well-suited to hardcore physics as it does not allow multiplying
  // one quantity by another.  For example, multiplying meters by meters won't get you square
  // meters; it will get you a compiler error.  It would be interesting to see if template
  // metaprogramming could properly deal with such things but this isn't needed for the present
  // use case.
  //
  // Sample usage:
  //
  //   class SecondsLabel;
  //   typedef Quantity<double, SecondsLabel> Seconds;
  //   constexpr Seconds SECONDS = unit<Seconds>();
  //
  //   class MinutesLabel;
  //   typedef Quantity<double, MinutesLabel> Minutes;
  //   constexpr Minutes MINUTES = unit<Minutes>();
  //
  //   constexpr UnitRatio<double, SecondsLabel, MinutesLabel> SECONDS_PER_MINUTE =
  //       60 * SECONDS / MINUTES;
  //
  //   void waitFor(Seconds seconds) {
  //     sleep(seconds / SECONDS);
  //   }
  //   void waitFor(Minutes minutes) {
  //     waitFor(minutes * SECONDS_PER_MINUTE);
  //   }
  //
  //   void waitThreeMinutes() {
  //     waitFor(3 * MINUTES);
  //   }

  static_assert(isIntegralOrBounded<Number>(),
      "Underlying type for Quantity must be integer.");

public:
  inline constexpr Quantity() = default;

  inline constexpr Quantity(MaxValue_): value(maxValue) {}
  inline constexpr Quantity(MinValue_): value(minValue) {}
  // Allow initialization from maxValue and minValue.
  // TODO(msvc): decltype(maxValue) and decltype(minValue) deduce unknown-type for these function
  // parameters, causing the compiler to complain of a duplicate constructor definition, so we
  // specify MaxValue_ and MinValue_ types explicitly.

  inline constexpr Quantity(Number value, decltype(unsafe)): value(value) {}
  // This constructor was intended to be private, but GCC complains about it being private in a
  // bunch of places that don't appear to even call it, so I made it public.  Oh well.

  template <typename OtherNumber>
  inline constexpr Quantity(const Quantity<OtherNumber, Unit>& other)
      : value(other.value) {}

  template <typename OtherNumber>
  inline Quantity& operator=(const Quantity<OtherNumber, Unit>& other) {
    value = other.value;
    return *this;
  }

  template <typename OtherNumber>
  inline constexpr Quantity<decltype(Number() + OtherNumber()), Unit>
      operator+(const Quantity<OtherNumber, Unit>& other) const {
    return Quantity<decltype(Number() + OtherNumber()), Unit>(value + other.value, unsafe);
  }
  template <typename OtherNumber>
  inline constexpr Quantity<decltype(Number() - OtherNumber()), Unit>
      operator-(const Quantity<OtherNumber, Unit>& other) const {
    return Quantity<decltype(Number() - OtherNumber()), Unit>(value - other.value, unsafe);
  }
  template <typename OtherNumber, typename = EnableIf<isIntegralOrBounded<OtherNumber>()>>
  inline constexpr Quantity<decltype(Number() * OtherNumber()), Unit>
      operator*(OtherNumber other) const {
    return Quantity<decltype(Number() * other), Unit>(value * other, unsafe);
  }
  template <typename OtherNumber, typename = EnableIf<isIntegralOrBounded<OtherNumber>()>>
  inline constexpr Quantity<decltype(Number() / OtherNumber()), Unit>
      operator/(OtherNumber other) const {
    return Quantity<decltype(Number() / other), Unit>(value / other, unsafe);
  }
  template <typename OtherNumber>
  inline constexpr decltype(Number() / OtherNumber())
      operator/(const Quantity<OtherNumber, Unit>& other) const {
    return value / other.value;
  }
  template <typename OtherNumber>
  inline constexpr Quantity<decltype(Number() % OtherNumber()), Unit>
      operator%(const Quantity<OtherNumber, Unit>& other) const {
    return Quantity<decltype(Number() % OtherNumber()), Unit>(value % other.value, unsafe);
  }

  template <typename OtherNumber, typename OtherUnit>
  inline constexpr Quantity<decltype(Number() * OtherNumber()), OtherUnit>
      operator*(UnitRatio<OtherNumber, OtherUnit, Unit> ratio) const {
    return Quantity<decltype(Number() * OtherNumber()), OtherUnit>(
        value * ratio.unit1PerUnit2, unsafe);
  }
  template <typename OtherNumber, typename OtherUnit>
  inline constexpr Quantity<decltype(Number() / OtherNumber()), OtherUnit>
      operator/(UnitRatio<OtherNumber, Unit, OtherUnit> ratio) const {
    return Quantity<decltype(Number() / OtherNumber()), OtherUnit>(
        value / ratio.unit1PerUnit2, unsafe);
  }
  template <typename OtherNumber, typename OtherUnit>
  inline constexpr Quantity<decltype(Number() % OtherNumber()), Unit>
      operator%(UnitRatio<OtherNumber, Unit, OtherUnit> ratio) const {
    return Quantity<decltype(Number() % OtherNumber()), Unit>(
        value % ratio.unit1PerUnit2, unsafe);
  }
  template <typename OtherNumber, typename OtherUnit>
  inline constexpr UnitRatio<decltype(Number() / OtherNumber()), Unit, OtherUnit>
      operator/(Quantity<OtherNumber, OtherUnit> other) const {
    return UnitRatio<decltype(Number() / OtherNumber()), Unit, OtherUnit>(
        value / other.value, unsafe);
  }

  template <typename OtherNumber>
  inline constexpr bool operator==(const Quantity<OtherNumber, Unit>& other) const {
    return value == other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator!=(const Quantity<OtherNumber, Unit>& other) const {
    return value != other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator<=(const Quantity<OtherNumber, Unit>& other) const {
    return value <= other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator>=(const Quantity<OtherNumber, Unit>& other) const {
    return value >= other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator<(const Quantity<OtherNumber, Unit>& other) const {
    return value < other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator>(const Quantity<OtherNumber, Unit>& other) const {
    return value > other.value;
  }

  template <typename OtherNumber>
  inline Quantity& operator+=(const Quantity<OtherNumber, Unit>& other) {
    value += other.value;
    return *this;
  }
  template <typename OtherNumber>
  inline Quantity& operator-=(const Quantity<OtherNumber, Unit>& other) {
    value -= other.value;
    return *this;
  }
  template <typename OtherNumber>
  inline Quantity& operator*=(OtherNumber other) {
    value *= other;
    return *this;
  }
  template <typename OtherNumber>
  inline Quantity& operator/=(OtherNumber other) {
    value /= other.value;
    return *this;
  }

private:
  Number value;

  template <typename OtherNumber, typename OtherUnit>
  friend class Quantity;

  template <typename Number1, typename Number2, typename Unit2>
  friend inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit2> b)
      -> Quantity<decltype(Number1() * Number2()), Unit2>;
};

template <typename T> struct Unit_ {
  static inline constexpr T get() { return T(1); }
};
template <typename T, typename U>
struct Unit_<Quantity<T, U>> {
  static inline constexpr Quantity<decltype(Unit_<T>::get()), U> get() {
    return Quantity<decltype(Unit_<T>::get()), U>(Unit_<T>::get(), unsafe);
  }
};

template <typename T>
inline constexpr auto unit() -> decltype(Unit_<T>::get()) { return Unit_<T>::get(); }
// unit<Quantity<T, U>>() returns a Quantity of value 1.  It also, intentionally, works on basic
// numeric types.

template <typename Number1, typename Number2, typename Unit>
inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit> b)
    -> Quantity<decltype(Number1() * Number2()), Unit> {
  return Quantity<decltype(Number1() * Number2()), Unit>(a * b.value, unsafe);
}

template <typename Number1, typename Number2, typename Unit, typename Unit2>
inline constexpr auto operator*(UnitRatio<Number1, Unit2, Unit> ratio,
    Quantity<Number2, Unit> measure)
    -> decltype(measure * ratio) {
  return measure * ratio;
}

// =======================================================================================
// Absolute measures

template <typename T, typename Label>
class Absolute {
  // Wraps some other value -- typically a Quantity -- but represents a value measured based on
  // some absolute origin.  For example, if `Duration` is a type representing a time duration,
  // Absolute<Duration, UnixEpoch> might be a calendar date.
  //
  // Since Absolute represents measurements relative to some arbitrary origin, the only sensible
  // arithmetic to perform on them is addition and subtraction.

  // TODO(someday):  Do the same automatic expansion of integer width that Quantity does?  Doesn't
  //   matter for our time use case, where we always use 64-bit anyway.  Note that fixing this
  //   would implicitly allow things like multiplying an Absolute by a UnitRatio to change its
  //   units, which is actually totally logical and kind of neat.

public:
  inline constexpr Absolute operator+(const T& other) const { return Absolute(value + other); }
  inline constexpr Absolute operator-(const T& other) const { return Absolute(value - other); }
  inline constexpr T operator-(const Absolute& other) const { return value - other.value; }

  inline Absolute& operator+=(const T& other) { value += other; return *this; }
  inline Absolute& operator-=(const T& other) { value -= other; return *this; }

  inline constexpr bool operator==(const Absolute& other) const { return value == other.value; }
  inline constexpr bool operator!=(const Absolute& other) const { return value != other.value; }
  inline constexpr bool operator<=(const Absolute& other) const { return value <= other.value; }
  inline constexpr bool operator>=(const Absolute& other) const { return value >= other.value; }
  inline constexpr bool operator< (const Absolute& other) const { return value <  other.value; }
  inline constexpr bool operator> (const Absolute& other) const { return value >  other.value; }

private:
  T value;

  explicit constexpr Absolute(T value): value(value) {}

  template <typename U>
  friend inline constexpr U origin();
};

template <typename T, typename Label>
inline constexpr Absolute<T, Label> operator+(const T& a, const Absolute<T, Label>& b) {
  return b + a;
}

template <typename T> struct UnitOf_ { typedef T Type; };
template <typename T, typename Label> struct UnitOf_<Absolute<T, Label>> { typedef T Type; };
template <typename T>
using UnitOf = typename UnitOf_<T>::Type;
// UnitOf<Absolute<T, U>> is T.  UnitOf<AnythingElse> is AnythingElse.

template <typename T>
inline constexpr T origin() { return T(0 * unit<UnitOf<T>>()); }
// origin<Absolute<T, U>>() returns an Absolute of value 0.  It also, intentionally, works on basic
// numeric types.

// =======================================================================================
// Overflow avoidance

template <uint64_t n, uint accum = 0>
struct BitCount_ {
  static constexpr uint value = BitCount_<(n >> 1), accum + 1>::value;
};
template <uint accum>
struct BitCount_<0, accum> {
  static constexpr uint value = accum;
};

template <uint64_t n>
inline constexpr uint bitCount() { return BitCount_<n>::value; }
// Number of bits required to represent the number `n`.

template <uint bitCountBitCount> struct AtLeastUInt_ {
  static_assert(bitCountBitCount < 7, "don't know how to represent integers over 64 bits");
};
template <> struct AtLeastUInt_<0> { typedef uint8_t Type; };
template <> struct AtLeastUInt_<1> { typedef uint8_t Type; };
template <> struct AtLeastUInt_<2> { typedef uint8_t Type; };
template <> struct AtLeastUInt_<3> { typedef uint8_t Type; };
template <> struct AtLeastUInt_<4> { typedef uint16_t Type; };
template <> struct AtLeastUInt_<5> { typedef uint32_t Type; };
template <> struct AtLeastUInt_<6> { typedef uint64_t Type; };

template <uint bits>
using AtLeastUInt = typename AtLeastUInt_<bitCount<max(bits, 1) - 1>()>::Type;
// AtLeastUInt<n> is an unsigned integer of at least n bits. E.g. AtLeastUInt<12> is uint16_t.

// -------------------------------------------------------------------

template <uint value>
class BoundedConst {
  // A constant integer value on which we can do bit size analysis.

public:
  BoundedConst() = default;

  inline constexpr uint unwrap() const { return value; }

#define OP(op, check) \
  template <uint other> \
  inline constexpr BoundedConst<(value op other)> \
      operator op(BoundedConst<other>) const { \
    static_assert(check, "overflow in BoundedConst arithmetic"); \
    return BoundedConst<(value op other)>(); \
  }
#define COMPARE_OP(op) \
  template <uint other> \
  inline constexpr bool operator op(BoundedConst<other>) const { \
    return value op other; \
  }

  OP(+, value + other >= value)
  OP(-, value - other <= value)
  OP(*, value * other / other == value)
  OP(/, true)   // div by zero already errors out; no other division ever overflows
  OP(%, true)   // mod by zero already errors out; no other modulus ever overflows
  OP(<<, value << other >= value)
  OP(>>, true)  // right shift can't overflow
  OP(&, true)   // bitwise ops can't overflow
  OP(|, true)   // bitwise ops can't overflow

  COMPARE_OP(==)
  COMPARE_OP(!=)
  COMPARE_OP(< )
  COMPARE_OP(> )
  COMPARE_OP(<=)
  COMPARE_OP(>=)
#undef OP
#undef COMPARE_OP
};

template <uint64_t m, typename T>
struct Unit_<Bounded<m, T>> {
  static inline constexpr BoundedConst<1> get() { return BoundedConst<1>(); }
};

template <uint value>
struct Unit_<BoundedConst<value>> {
  static inline constexpr BoundedConst<1> get() { return BoundedConst<1>(); }
};

template <uint value>
inline constexpr BoundedConst<value> bounded() {
  return BoundedConst<value>();
}

template <uint64_t a, uint64_t b>
static constexpr uint64_t boundedAdd() {
  static_assert(a + b >= a, "possible overflow detected");
  return a + b;
}
template <uint64_t a, uint64_t b>
static constexpr uint64_t boundedSub() {
  static_assert(a - b <= a, "possible underflow detected");
  return a - b;
}
template <uint64_t a, uint64_t b>
static constexpr uint64_t boundedMul() {
  static_assert(a * b / b == a, "possible overflow detected");
  return a * b;
}
template <uint64_t a, uint64_t b>
static constexpr uint64_t boundedLShift() {
  static_assert(a << b >= a, "possible overflow detected");
  return a << b;
}

template <uint a, uint b>
inline constexpr BoundedConst<kj::min(a, b)> min(BoundedConst<a>, BoundedConst<b>) {
  return bounded<kj::min(a, b)>();
}
template <uint a, uint b>
inline constexpr BoundedConst<kj::max(a, b)> max(BoundedConst<a>, BoundedConst<b>) {
  return bounded<kj::max(a, b)>();
}
// We need to override min() and max() between constants because the ternary operator in the
// default implementation would complain.

// -------------------------------------------------------------------

template <uint64_t maxN, typename T>
class Bounded {
public:
  static_assert(maxN <= T(kj::maxValue), "possible overflow detected");

  Bounded() = default;

  Bounded(const Bounded& other) = default;
  template <typename OtherInt, typename = EnableIf<isIntegral<OtherInt>()>>
  inline constexpr Bounded(OtherInt value): value(value) {
    static_assert(OtherInt(maxValue) <= maxN, "possible overflow detected");
  }
  template <uint64_t otherMax, typename OtherT>
  inline constexpr Bounded(const Bounded<otherMax, OtherT>& other)
      : value(other.value) {
    static_assert(otherMax <= maxN, "possible overflow detected");
  }
  template <uint otherValue>
  inline constexpr Bounded(BoundedConst<otherValue>)
      : value(otherValue) {
    static_assert(otherValue <= maxN, "overflow detected");
  }

  Bounded& operator=(const Bounded& other) = default;
  template <typename OtherInt, typename = EnableIf<isIntegral<OtherInt>()>>
  Bounded& operator=(OtherInt other) {
    static_assert(OtherInt(maxValue) <= maxN, "possible overflow detected");
    value = other;
    return *this;
  }
  template <uint64_t otherMax, typename OtherT>
  inline Bounded& operator=(const Bounded<otherMax, OtherT>& other) {
    static_assert(otherMax <= maxN, "possible overflow detected");
    value = other.value;
    return *this;
  }
  template <uint otherValue>
  inline Bounded& operator=(BoundedConst<otherValue>) {
    static_assert(otherValue <= maxN, "overflow detected");
    value = otherValue;
    return *this;
  }

  inline constexpr T unwrap() const { return value; }

#define OP(op, newMax) \
  template <uint64_t otherMax, typename otherT> \
  inline constexpr Bounded<newMax, decltype(T() op otherT())> \
      operator op(const Bounded<otherMax, otherT>& other) const { \
    return Bounded<newMax, decltype(T() op otherT())>(value op other.value, unsafe); \
  }
#define COMPARE_OP(op) \
  template <uint64_t otherMax, typename OtherT> \
  inline constexpr bool operator op(const Bounded<otherMax, OtherT>& other) const { \
    return value op other.value; \
  }

  OP(+, (boundedAdd<maxN, otherMax>()))
  OP(*, (boundedMul<maxN, otherMax>()))
  OP(/, maxN)
  OP(%, otherMax - 1)

  // operator- is intentionally omitted because we mostly use this with unsigned types, and
  // subtraction requires proof that subtrahend is not greater than the minuend.

  COMPARE_OP(==)
  COMPARE_OP(!=)
  COMPARE_OP(< )
  COMPARE_OP(> )
  COMPARE_OP(<=)
  COMPARE_OP(>=)

#undef OP
#undef COMPARE_OP

  template <uint64_t newMax, typename ErrorFunc>
  inline Bounded<newMax, T> assertMax(ErrorFunc&& func) const {
    // Assert that the number is no more than `newMax`. Otherwise, call `func`.
    static_assert(newMax < maxN, "this bounded size assertion is redundant");
    if (KJ_UNLIKELY(value > newMax)) func();
    return Bounded<newMax, T>(value, unsafe);
  }

  template <uint64_t otherMax, typename OtherT, typename ErrorFunc>
  inline Bounded<maxN, decltype(T() - OtherT())> subtractChecked(
      const Bounded<otherMax, OtherT>& other, ErrorFunc&& func) const {
    // Subtract a number, calling func() if the result would underflow.
    if (KJ_UNLIKELY(value < other.value)) func();
    return Bounded<maxN, decltype(T() - OtherT())>(value - other.value, unsafe);
  }

  template <uint otherValue, typename ErrorFunc>
  inline Bounded<maxN - otherValue, T> subtractChecked(
      BoundedConst<otherValue>, ErrorFunc&& func) const {
    // Subtract a number, calling func() if the result would underflow.
    static_assert(otherValue <= maxN, "underflow detected");
    if (KJ_UNLIKELY(value < otherValue)) func();
    return Bounded<maxN - otherValue, T>(value - otherValue, unsafe);
  }

  template <uint64_t otherMax, typename OtherT>
  inline Maybe<Bounded<maxN, decltype(T() - OtherT())>> trySubtract(
      const Bounded<otherMax, OtherT>& other) const {
    // Subtract a number, calling func() if the result would underflow.
    if (value < other.value) {
      return nullptr;
    } else {
      return Bounded<maxN, decltype(T() - OtherT())>(value - other.value, unsafe);
    }
  }

  template <uint otherValue>
  inline Maybe<Bounded<maxN - otherValue, T>> trySubtract(BoundedConst<otherValue>) const {
    // Subtract a number, calling func() if the result would underflow.
    if (value < otherValue) {
      return nullptr;
    } else {
      return Bounded<maxN - otherValue, T>(value - otherValue, unsafe);
    }
  }

  inline constexpr Bounded(T value, decltype(unsafe)): value(value) {}
  template <uint64_t otherMax, typename OtherT>
  inline constexpr Bounded(Bounded<otherMax, OtherT> value, decltype(unsafe))
      : value(value.value) {}
  // Mainly for internal use.
  //
  // Only use these as a last resort, with ample commentary on why you think it's safe.

private:
  T value;

  template <uint64_t, typename>
  friend class Bounded;
};

template <typename Number>
inline constexpr Bounded<Number(kj::maxValue), Number> bounded(Number value) {
  return Bounded<Number(kj::maxValue), Number>(value, unsafe);
}

inline constexpr Bounded<1, uint8_t> bounded(bool value) {
  return Bounded<1, uint8_t>(value, unsafe);
}

template <uint bits, typename Number>
inline constexpr Bounded<maxValueForBits<bits>(), Number> assumeBits(Number value) {
  return Bounded<maxValueForBits<bits>(), Number>(value, unsafe);
}

template <uint bits, uint64_t maxN, typename T>
inline constexpr Bounded<maxValueForBits<bits>(), T> assumeBits(Bounded<maxN, T> value) {
  return Bounded<maxValueForBits<bits>(), T>(value, unsafe);
}

template <uint bits, typename Number, typename Unit>
inline constexpr auto assumeBits(Quantity<Number, Unit> value)
    -> Quantity<decltype(assumeBits<bits>(value / unit<Quantity<Number, Unit>>())), Unit> {
  return Quantity<decltype(assumeBits<bits>(value / unit<Quantity<Number, Unit>>())), Unit>(
      assumeBits<bits>(value / unit<Quantity<Number, Unit>>()), unsafe);
}

template <uint64_t maxN, typename Number>
inline constexpr Bounded<maxN, Number> assumeMax(Number value) {
  return Bounded<maxN, Number>(value, unsafe);
}

template <uint64_t newMaxN, uint64_t maxN, typename T>
inline constexpr Bounded<newMaxN, T> assumeMax(Bounded<maxN, T> value) {
  return Bounded<newMaxN, T>(value, unsafe);
}

template <uint64_t maxN, typename Number, typename Unit>
inline constexpr auto assumeMax(Quantity<Number, Unit> value)
    -> Quantity<decltype(assumeMax<maxN>(value / unit<Quantity<Number, Unit>>())), Unit> {
  return Quantity<decltype(assumeMax<maxN>(value / unit<Quantity<Number, Unit>>())), Unit>(
      assumeMax<maxN>(value / unit<Quantity<Number, Unit>>()), unsafe);
}

template <uint maxN, typename Number>
inline constexpr Bounded<maxN, Number> assumeMax(BoundedConst<maxN>, Number value) {
  return assumeMax<maxN>(value);
}

template <uint newMaxN, uint64_t maxN, typename T>
inline constexpr Bounded<newMaxN, T> assumeMax(BoundedConst<maxN>, Bounded<maxN, T> value) {
  return assumeMax<maxN>(value);
}

template <uint maxN, typename Number, typename Unit>
inline constexpr auto assumeMax(Quantity<BoundedConst<maxN>, Unit>, Quantity<Number, Unit> value)
    -> decltype(assumeMax<maxN>(value)) {
  return assumeMax<maxN>(value);
}

template <uint64_t newMax, uint64_t maxN, typename T, typename ErrorFunc>
inline Bounded<newMax, T> assertMax(Bounded<maxN, T> value, ErrorFunc&& errorFunc) {
  // Assert that the bounded value is less than or equal to the given maximum, calling errorFunc()
  // if not.
  static_assert(newMax < maxN, "this bounded size assertion is redundant");
  return value.template assertMax<newMax>(kj::fwd<ErrorFunc>(errorFunc));
}

template <uint64_t newMax, uint64_t maxN, typename T, typename Unit, typename ErrorFunc>
inline Quantity<Bounded<newMax, T>, Unit> assertMax(
    Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc) {
  // Assert that the bounded value is less than or equal to the given maximum, calling errorFunc()
  // if not.
  static_assert(newMax < maxN, "this bounded size assertion is redundant");
  return (value / unit<decltype(value)>()).template assertMax<newMax>(
      kj::fwd<ErrorFunc>(errorFunc)) * unit<decltype(value)>();
}

template <uint newMax, uint64_t maxN, typename T, typename ErrorFunc>
inline Bounded<newMax, T> assertMax(
    BoundedConst<newMax>, Bounded<maxN, T> value, ErrorFunc&& errorFunc) {
  return assertMax<newMax>(value, kj::mv(errorFunc));
}

template <uint newMax, uint64_t maxN, typename T, typename Unit, typename ErrorFunc>
inline Quantity<Bounded<newMax, T>, Unit> assertMax(
    Quantity<BoundedConst<newMax>, Unit>,
    Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc) {
  return assertMax<newMax>(value, kj::mv(errorFunc));
}

template <uint64_t newBits, uint64_t maxN, typename T, typename ErrorFunc = ThrowOverflow>
inline Bounded<maxValueForBits<newBits>(), T> assertMaxBits(
    Bounded<maxN, T> value, ErrorFunc&& errorFunc = ErrorFunc()) {
  // Assert that the bounded value requires no more than the given number of bits, calling
  // errorFunc() if not.
  return assertMax<maxValueForBits<newBits>()>(value, kj::fwd<ErrorFunc>(errorFunc));
}

template <uint64_t newBits, uint64_t maxN, typename T, typename Unit,
          typename ErrorFunc = ThrowOverflow>
inline Quantity<Bounded<maxValueForBits<newBits>(), T>, Unit> assertMaxBits(
    Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc = ErrorFunc()) {
  // Assert that the bounded value requires no more than the given number of bits, calling
  // errorFunc() if not.
  return assertMax<maxValueForBits<newBits>()>(value, kj::fwd<ErrorFunc>(errorFunc));
}

template <typename newT, uint64_t maxN, typename T>
inline constexpr Bounded<maxN, newT> upgradeBound(Bounded<maxN, T> value) {
  return value;
}

template <typename newT, uint64_t maxN, typename T, typename Unit>
inline constexpr Quantity<Bounded<maxN, newT>, Unit> upgradeBound(
    Quantity<Bounded<maxN, T>, Unit> value) {
  return value;
}

template <uint64_t maxN, typename T, typename Other, typename ErrorFunc>
inline auto subtractChecked(Bounded<maxN, T> value, Other other, ErrorFunc&& errorFunc)
    -> decltype(value.subtractChecked(other, kj::fwd<ErrorFunc>(errorFunc))) {
  return value.subtractChecked(other, kj::fwd<ErrorFunc>(errorFunc));
}

template <typename T, typename U, typename Unit, typename ErrorFunc>
inline auto subtractChecked(Quantity<T, Unit> value, Quantity<U, Unit> other, ErrorFunc&& errorFunc)
    -> Quantity<decltype(subtractChecked(T(), U(), kj::fwd<ErrorFunc>(errorFunc))), Unit> {
  return subtractChecked(value / unit<Quantity<T, Unit>>(),
                         other / unit<Quantity<U, Unit>>(),
                         kj::fwd<ErrorFunc>(errorFunc))
      * unit<Quantity<T, Unit>>();
}

template <uint64_t maxN, typename T, typename Other>
inline auto trySubtract(Bounded<maxN, T> value, Other other)
    -> decltype(value.trySubtract(other)) {
  return value.trySubtract(other);
}

template <typename T, typename U, typename Unit>
inline auto trySubtract(Quantity<T, Unit> value, Quantity<U, Unit> other)
    -> Maybe<Quantity<decltype(subtractChecked(T(), U(), int())), Unit>> {
  return trySubtract(value / unit<Quantity<T, Unit>>(),
                     other / unit<Quantity<U, Unit>>())
      .map([](decltype(subtractChecked(T(), U(), int())) x) {
    return x * unit<Quantity<T, Unit>>();
  });
}

template <uint64_t aN, uint64_t bN, typename A, typename B>
inline constexpr Bounded<kj::min(aN, bN), WiderType<A, B>>
min(Bounded<aN, A> a, Bounded<bN, B> b) {
  return Bounded<kj::min(aN, bN), WiderType<A, B>>(kj::min(a.unwrap(), b.unwrap()), unsafe);
}
template <uint64_t aN, uint64_t bN, typename A, typename B>
inline constexpr Bounded<kj::max(aN, bN), WiderType<A, B>>
max(Bounded<aN, A> a, Bounded<bN, B> b) {
  return Bounded<kj::max(aN, bN), WiderType<A, B>>(kj::max(a.unwrap(), b.unwrap()), unsafe);
}
// We need to override min() and max() because:
// 1) WiderType<> might not choose the correct bounds.
// 2) One of the two sides of the ternary operator in the default implementation would fail to
//    typecheck even though it is OK in practice.

// -------------------------------------------------------------------
// Operators between Bounded and BoundedConst

#define OP(op, newMax) \
template <uint64_t maxN, uint cvalue, typename T> \
inline constexpr Bounded<(newMax), decltype(T() op uint())> operator op( \
    Bounded<maxN, T> value, BoundedConst<cvalue>) { \
  return Bounded<(newMax), decltype(T() op uint())>(value.unwrap() op cvalue, unsafe); \
}

#define REVERSE_OP(op, newMax) \
template <uint64_t maxN, uint cvalue, typename T> \
inline constexpr Bounded<(newMax), decltype(uint() op T())> operator op( \
    BoundedConst<cvalue>, Bounded<maxN, T> value) { \
  return Bounded<(newMax), decltype(uint() op T())>(cvalue op value.unwrap(), unsafe); \
}

#define COMPARE_OP(op) \
template <uint64_t maxN, uint cvalue, typename T> \
inline constexpr bool operator op(Bounded<maxN, T> value, BoundedConst<cvalue>) { \
  return value.unwrap() op cvalue; \
} \
template <uint64_t maxN, uint cvalue, typename T> \
inline constexpr bool operator op(BoundedConst<cvalue>, Bounded<maxN, T> value) { \
  return cvalue op value.unwrap(); \
}

OP(+, (boundedAdd<maxN, cvalue>()))
REVERSE_OP(+, (boundedAdd<maxN, cvalue>()))

OP(*, (boundedMul<maxN, cvalue>()))
REVERSE_OP(*, (boundedAdd<maxN, cvalue>()))

OP(/, maxN / cvalue)
REVERSE_OP(/, cvalue)  // denominator could be 1

OP(%, cvalue - 1)
REVERSE_OP(%, maxN - 1)

OP(<<, (boundedLShift<maxN, cvalue>()))
REVERSE_OP(<<, (boundedLShift<cvalue, maxN>()))

OP(>>, maxN >> cvalue)
REVERSE_OP(>>, cvalue >> maxN)

OP(&, maxValueForBits<bitCount<maxN>()>() & cvalue)
REVERSE_OP(&, maxValueForBits<bitCount<maxN>()>() & cvalue)

OP(|, maxN | cvalue)
REVERSE_OP(|, maxN | cvalue)

COMPARE_OP(==)
COMPARE_OP(!=)
COMPARE_OP(< )
COMPARE_OP(> )
COMPARE_OP(<=)
COMPARE_OP(>=)

#undef OP
#undef REVERSE_OP
#undef COMPARE_OP

template <uint64_t maxN, uint cvalue, typename T>
inline constexpr Bounded<cvalue, decltype(uint() - T())>
    operator-(BoundedConst<cvalue>, Bounded<maxN, T> value) {
  // We allow subtraction of a variable from a constant only if the constant is greater than or
  // equal to the maximum possible value of the variable. Since the variable could be zero, the
  // result can be as large as the constant.
  //
  // We do not allow subtraction of a constant from a variable because there's never a guarantee it
  // won't underflow (unless the constant is zero, which is silly).
  static_assert(cvalue >= maxN, "possible underflow detected");
  return Bounded<cvalue, decltype(uint() - T())>(cvalue - value.unwrap(), unsafe);
}

template <uint64_t aN, uint b, typename A>
inline constexpr Bounded<kj::min(aN, b), A> min(Bounded<aN, A> a, BoundedConst<b>) {
  return Bounded<kj::min(aN, b), A>(kj::min(b, a.unwrap()), unsafe);
}
template <uint64_t aN, uint b, typename A>
inline constexpr Bounded<kj::min(aN, b), A> min(BoundedConst<b>, Bounded<aN, A> a) {
  return Bounded<kj::min(aN, b), A>(kj::min(a.unwrap(), b), unsafe);
}
template <uint64_t aN, uint b, typename A>
inline constexpr Bounded<kj::max(aN, b), A> max(Bounded<aN, A> a, BoundedConst<b>) {
  return Bounded<kj::max(aN, b), A>(kj::max(b, a.unwrap()), unsafe);
}
template <uint64_t aN, uint b, typename A>
inline constexpr Bounded<kj::max(aN, b), A> max(BoundedConst<b>, Bounded<aN, A> a) {
  return Bounded<kj::max(aN, b), A>(kj::max(a.unwrap(), b), unsafe);
}
// We need to override min() between a Bounded and a constant since:
// 1) WiderType<> might choose BoundedConst over a 1-byte Bounded, which is wrong.
// 2) To clamp the bounds of the output type.
// 3) Same ternary operator typechecking issues.

// -------------------------------------------------------------------

template <uint64_t maxN, typename T>
class SafeUnwrapper {
public:
  inline explicit constexpr SafeUnwrapper(Bounded<maxN, T> value): value(value.unwrap()) {}

  template <typename U, typename = EnableIf<isIntegral<U>()>>
  inline constexpr operator U() const {
    static_assert(maxN <= U(maxValue), "possible truncation detected");
    return value;
  }

  inline constexpr operator bool() const {
    static_assert(maxN <= 1, "possible truncation detected");
    return value;
  }

private:
  T value;
};

template <uint64_t maxN, typename T>
inline constexpr SafeUnwrapper<maxN, T> unbound(Bounded<maxN, T> bounded) {
  // Unwraps the bounded value, returning a value that can be implicitly cast to any integer type.
  // If this implicit cast could truncate, a compile-time error will be raised.
  return SafeUnwrapper<maxN, T>(bounded);
}

template <uint64_t value>
class SafeConstUnwrapper {
public:
  template <typename T, typename = EnableIf<isIntegral<T>()>>
  inline constexpr operator T() const {
    static_assert(value <= T(maxValue), "this operation will truncate");
    return value;
  }

  inline constexpr operator bool() const {
    static_assert(value <= 1, "this operation will truncate");
    return value;
  }
};

template <uint value>
inline constexpr SafeConstUnwrapper<value> unbound(BoundedConst<value>) {
  return SafeConstUnwrapper<value>();
}

template <typename T, typename U>
inline constexpr T unboundAs(U value) {
  return unbound(value);
}

template <uint64_t requestedMax, uint64_t maxN, typename T>
inline constexpr T unboundMax(Bounded<maxN, T> value) {
  // Explicitly ungaurd expecting a value that is at most `maxN`.
  static_assert(maxN <= requestedMax, "possible overflow detected");
  return value.unwrap();
}

template <uint64_t requestedMax, uint value>
inline constexpr uint unboundMax(BoundedConst<value>) {
  // Explicitly ungaurd expecting a value that is at most `maxN`.
  static_assert(value <= requestedMax, "overflow detected");
  return value;
}

template <uint bits, typename T>
inline constexpr auto unboundMaxBits(T value) ->
    decltype(unboundMax<maxValueForBits<bits>()>(value)) {
  // Explicitly ungaurd expecting a value that fits into `bits` bits.
  return unboundMax<maxValueForBits<bits>()>(value);
}

#define OP(op) \
template <uint64_t maxN, typename T, typename U> \
inline constexpr auto operator op(T a, SafeUnwrapper<maxN, U> b) -> decltype(a op (T)b) { \
  return a op (AtLeastUInt<sizeof(T)*8>)b; \
} \
template <uint64_t maxN, typename T, typename U> \
inline constexpr auto operator op(SafeUnwrapper<maxN, U> b, T a) -> decltype((T)b op a) { \
  return (AtLeastUInt<sizeof(T)*8>)b op a; \
} \
template <uint64_t value, typename T> \
inline constexpr auto operator op(T a, SafeConstUnwrapper<value> b) -> decltype(a op (T)b) { \
  return a op (AtLeastUInt<sizeof(T)*8>)b; \
} \
template <uint64_t value, typename T> \
inline constexpr auto operator op(SafeConstUnwrapper<value> b, T a) -> decltype((T)b op a) { \
  return (AtLeastUInt<sizeof(T)*8>)b op a; \
}

OP(+)
OP(-)
OP(*)
OP(/)
OP(%)
OP(<<)
OP(>>)
OP(&)
OP(|)
OP(==)
OP(!=)
OP(<=)
OP(>=)
OP(<)
OP(>)

#undef OP

// -------------------------------------------------------------------

template <uint64_t maxN, typename T>
class Range<Bounded<maxN, T>> {
public:
  inline constexpr Range(Bounded<maxN, T> begin, Bounded<maxN, T> end)
      : inner(unbound(begin), unbound(end)) {}
  inline explicit constexpr Range(Bounded<maxN, T> end)
      : inner(unbound(end)) {}

  class Iterator {
  public:
    Iterator() = default;
    inline explicit Iterator(typename Range<T>::Iterator inner): inner(inner) {}

    inline Bounded<maxN, T> operator* () const { return Bounded<maxN, T>(*inner, unsafe); }
    inline Iterator& operator++() { ++inner; return *this; }

    inline bool operator==(const Iterator& other) const { return inner == other.inner; }
    inline bool operator!=(const Iterator& other) const { return inner != other.inner; }

  private:
    typename Range<T>::Iterator inner;
  };

  inline Iterator begin() const { return Iterator(inner.begin()); }
  inline Iterator end() const { return Iterator(inner.end()); }

private:
  Range<T> inner;
};

template <typename T, typename U>
class Range<Quantity<T, U>> {
public:
  inline constexpr Range(Quantity<T, U> begin, Quantity<T, U> end)
      : inner(begin / unit<Quantity<T, U>>(), end / unit<Quantity<T, U>>()) {}
  inline explicit constexpr Range(Quantity<T, U> end)
      : inner(end / unit<Quantity<T, U>>()) {}

  class Iterator {
  public:
    Iterator() = default;
    inline explicit Iterator(typename Range<T>::Iterator inner): inner(inner) {}

    inline Quantity<T, U> operator* () const { return *inner * unit<Quantity<T, U>>(); }
    inline Iterator& operator++() { ++inner; return *this; }

    inline bool operator==(const Iterator& other) const { return inner == other.inner; }
    inline bool operator!=(const Iterator& other) const { return inner != other.inner; }

  private:
    typename Range<T>::Iterator inner;
  };

  inline Iterator begin() const { return Iterator(inner.begin()); }
  inline Iterator end() const { return Iterator(inner.end()); }

private:
  Range<T> inner;
};

template <uint value>
inline constexpr Range<Bounded<value, uint>> zeroTo(BoundedConst<value> end) {
  return Range<Bounded<value, uint>>(end);
}

template <uint value, typename Unit>
inline constexpr Range<Quantity<Bounded<value, uint>, Unit>>
    zeroTo(Quantity<BoundedConst<value>, Unit> end) {
  return Range<Quantity<Bounded<value, uint>, Unit>>(end);
}

}  // namespace kj

#endif  // KJ_UNITS_H_