view win64-msvc/include/kj/mutex.h @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 0f2d93caa50c
children
line wrap: on
line source
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#ifndef KJ_MUTEX_H_
#define KJ_MUTEX_H_

#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif

#include "memory.h"
#include <inttypes.h>

#if __linux__ && !defined(KJ_USE_FUTEX)
#define KJ_USE_FUTEX 1
#endif

#if !KJ_USE_FUTEX && !_WIN32
// On Linux we use futex.  On other platforms we wrap pthreads.
// TODO(someday):  Write efficient low-level locking primitives for other platforms.
#include <pthread.h>
#endif

namespace kj {

// =======================================================================================
// Private details -- public interfaces follow below.

namespace _ {  // private

class Mutex {
  // Internal implementation details.  See `MutexGuarded<T>`.

public:
  Mutex();
  ~Mutex();
  KJ_DISALLOW_COPY(Mutex);

  enum Exclusivity {
    EXCLUSIVE,
    SHARED
  };

  void lock(Exclusivity exclusivity);
  void unlock(Exclusivity exclusivity);

  void assertLockedByCaller(Exclusivity exclusivity);
  // In debug mode, assert that the mutex is locked by the calling thread, or if that is
  // non-trivial, assert that the mutex is locked (which should be good enough to catch problems
  // in unit tests).  In non-debug builds, do nothing.

private:
#if KJ_USE_FUTEX
  uint futex;
  // bit 31 (msb) = set if exclusive lock held
  // bit 30 (msb) = set if threads are waiting for exclusive lock
  // bits 0-29 = count of readers; If an exclusive lock is held, this is the count of threads
  //   waiting for a read lock, otherwise it is the count of threads that currently hold a read
  //   lock.

  static constexpr uint EXCLUSIVE_HELD = 1u << 31;
  static constexpr uint EXCLUSIVE_REQUESTED = 1u << 30;
  static constexpr uint SHARED_COUNT_MASK = EXCLUSIVE_REQUESTED - 1;

#elif _WIN32
  uintptr_t srwLock;  // Actually an SRWLOCK, but don't want to #include <windows.h> in header.

#else
  mutable pthread_rwlock_t mutex;
#endif
};

class Once {
  // Internal implementation details.  See `Lazy<T>`.

public:
#if KJ_USE_FUTEX
  inline Once(bool startInitialized = false)
      : futex(startInitialized ? INITIALIZED : UNINITIALIZED) {}
#else
  Once(bool startInitialized = false);
  ~Once();
#endif
  KJ_DISALLOW_COPY(Once);

  class Initializer {
  public:
    virtual void run() = 0;
  };

  void runOnce(Initializer& init);

#if _WIN32  // TODO(perf): Can we make this inline on win32 somehow?
  bool isInitialized() noexcept;

#else
  inline bool isInitialized() noexcept {
    // Fast path check to see if runOnce() would simply return immediately.
#if KJ_USE_FUTEX
    return __atomic_load_n(&futex, __ATOMIC_ACQUIRE) == INITIALIZED;
#else
    return __atomic_load_n(&state, __ATOMIC_ACQUIRE) == INITIALIZED;
#endif
  }
#endif

  void reset();
  // Returns the state from initialized to uninitialized.  It is an error to call this when
  // not already initialized, or when runOnce() or isInitialized() might be called concurrently in
  // another thread.

private:
#if KJ_USE_FUTEX
  uint futex;

  enum State {
    UNINITIALIZED,
    INITIALIZING,
    INITIALIZING_WITH_WAITERS,
    INITIALIZED
  };

#elif _WIN32
  uintptr_t initOnce;  // Actually an INIT_ONCE, but don't want to #include <windows.h> in header.

#else
  enum State {
    UNINITIALIZED,
    INITIALIZED
  };
  State state;
  pthread_mutex_t mutex;
#endif
};

}  // namespace _ (private)

// =======================================================================================
// Public interface

template <typename T>
class Locked {
  // Return type for `MutexGuarded<T>::lock()`.  `Locked<T>` provides access to the bounded object
  // and unlocks the mutex when it goes out of scope.

public:
  KJ_DISALLOW_COPY(Locked);
  inline Locked(): mutex(nullptr), ptr(nullptr) {}
  inline Locked(Locked&& other): mutex(other.mutex), ptr(other.ptr) {
    other.mutex = nullptr;
    other.ptr = nullptr;
  }
  inline ~Locked() {
    if (mutex != nullptr) mutex->unlock(isConst<T>() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE);
  }

  inline Locked& operator=(Locked&& other) {
    if (mutex != nullptr) mutex->unlock(isConst<T>() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE);
    mutex = other.mutex;
    ptr = other.ptr;
    other.mutex = nullptr;
    other.ptr = nullptr;
    return *this;
  }

  inline void release() {
    if (mutex != nullptr) mutex->unlock(isConst<T>() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE);
    mutex = nullptr;
    ptr = nullptr;
  }

  inline T* operator->() { return ptr; }
  inline const T* operator->() const { return ptr; }
  inline T& operator*() { return *ptr; }
  inline const T& operator*() const { return *ptr; }
  inline T* get() { return ptr; }
  inline const T* get() const { return ptr; }
  inline operator T*() { return ptr; }
  inline operator const T*() const { return ptr; }

private:
  _::Mutex* mutex;
  T* ptr;

  inline Locked(_::Mutex& mutex, T& value): mutex(&mutex), ptr(&value) {}

  template <typename U>
  friend class MutexGuarded;
};

template <typename T>
class MutexGuarded {
  // An object of type T, bounded by a mutex.  In order to access the object, you must lock it.
  //
  // Write locks are not "recursive" -- trying to lock again in a thread that already holds a lock
  // will deadlock.  Recursive write locks are usually a sign of bad design.
  //
  // Unfortunately, **READ LOCKS ARE NOT RECURSIVE** either.  Common sense says they should be.
  // But on many operating systems (BSD, OSX), recursively read-locking a pthread_rwlock is
  // actually unsafe.  The problem is that writers are "prioritized" over readers, so a read lock
  // request will block if any write lock requests are outstanding.  So, if thread A takes a read
  // lock, thread B requests a write lock (and starts waiting), and then thread A tries to take
  // another read lock recursively, the result is deadlock.

public:
  template <typename... Params>
  explicit MutexGuarded(Params&&... params);
  // Initialize the mutex-bounded object by passing the given parameters to its constructor.

  Locked<T> lockExclusive() const;
  // Exclusively locks the object and returns it.  The returned `Locked<T>` can be passed by
  // move, similar to `Own<T>`.
  //
  // This method is declared `const` in accordance with KJ style rules which say that constness
  // should be used to indicate thread-safety.  It is safe to share a const pointer between threads,
  // but it is not safe to share a mutable pointer.  Since the whole point of MutexGuarded is to
  // be shared between threads, its methods should be const, even though locking it produces a
  // non-const pointer to the contained object.

  Locked<const T> lockShared() const;
  // Lock the value for shared access.  Multiple shared locks can be taken concurrently, but cannot
  // be held at the same time as a non-shared lock.

  inline const T& getWithoutLock() const { return value; }
  inline T& getWithoutLock() { return value; }
  // Escape hatch for cases where some external factor guarantees that it's safe to get the
  // value.  You should treat these like const_cast -- be highly suspicious of any use.

  inline const T& getAlreadyLockedShared() const;
  inline T& getAlreadyLockedShared();
  inline T& getAlreadyLockedExclusive() const;
  // Like `getWithoutLock()`, but asserts that the lock is already held by the calling thread.

private:
  mutable _::Mutex mutex;
  mutable T value;
};

template <typename T>
class MutexGuarded<const T> {
  // MutexGuarded cannot guard a const type.  This would be pointless anyway, and would complicate
  // the implementation of Locked<T>, which uses constness to decide what kind of lock it holds.
  static_assert(sizeof(T) < 0, "MutexGuarded's type cannot be const.");
};

template <typename T>
class Lazy {
  // A lazily-initialized value.

public:
  template <typename Func>
  T& get(Func&& init);
  template <typename Func>
  const T& get(Func&& init) const;
  // The first thread to call get() will invoke the given init function to construct the value.
  // Other threads will block until construction completes, then return the same value.
  //
  // `init` is a functor(typically a lambda) which takes `SpaceFor<T>&` as its parameter and returns
  // `Own<T>`.  If `init` throws an exception, the exception is propagated out of that thread's
  // call to `get()`, and subsequent calls behave as if `get()` hadn't been called at all yet --
  // in other words, subsequent calls retry initialization until it succeeds.

private:
  mutable _::Once once;
  mutable SpaceFor<T> space;
  mutable Own<T> value;

  template <typename Func>
  class InitImpl;
};

// =======================================================================================
// Inline implementation details

template <typename T>
template <typename... Params>
inline MutexGuarded<T>::MutexGuarded(Params&&... params)
    : value(kj::fwd<Params>(params)...) {}

template <typename T>
inline Locked<T> MutexGuarded<T>::lockExclusive() const {
  mutex.lock(_::Mutex::EXCLUSIVE);
  return Locked<T>(mutex, value);
}

template <typename T>
inline Locked<const T> MutexGuarded<T>::lockShared() const {
  mutex.lock(_::Mutex::SHARED);
  return Locked<const T>(mutex, value);
}

template <typename T>
inline const T& MutexGuarded<T>::getAlreadyLockedShared() const {
#ifdef KJ_DEBUG
  mutex.assertLockedByCaller(_::Mutex::SHARED);
#endif
  return value;
}
template <typename T>
inline T& MutexGuarded<T>::getAlreadyLockedShared() {
#ifdef KJ_DEBUG
  mutex.assertLockedByCaller(_::Mutex::SHARED);
#endif
  return value;
}
template <typename T>
inline T& MutexGuarded<T>::getAlreadyLockedExclusive() const {
#ifdef KJ_DEBUG
  mutex.assertLockedByCaller(_::Mutex::EXCLUSIVE);
#endif
  return const_cast<T&>(value);
}

template <typename T>
template <typename Func>
class Lazy<T>::InitImpl: public _::Once::Initializer {
public:
  inline InitImpl(const Lazy<T>& lazy, Func&& func): lazy(lazy), func(kj::fwd<Func>(func)) {}

  void run() override {
    lazy.value = func(lazy.space);
  }

private:
  const Lazy<T>& lazy;
  Func func;
};

template <typename T>
template <typename Func>
inline T& Lazy<T>::get(Func&& init) {
  if (!once.isInitialized()) {
    InitImpl<Func> initImpl(*this, kj::fwd<Func>(init));
    once.runOnce(initImpl);
  }
  return *value;
}

template <typename T>
template <typename Func>
inline const T& Lazy<T>::get(Func&& init) const {
  if (!once.isInitialized()) {
    InitImpl<Func> initImpl(*this, kj::fwd<Func>(init));
    once.runOnce(initImpl);
  }
  return *value;
}

}  // namespace kj

#endif  // KJ_MUTEX_H_