view win32-mingw/include/kj/array.h @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents eccd51b72864
children
line wrap: on
line source
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#ifndef KJ_ARRAY_H_
#define KJ_ARRAY_H_

#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif

#include "common.h"
#include <string.h>
#include <initializer_list>

namespace kj {

// =======================================================================================
// ArrayDisposer -- Implementation details.

class ArrayDisposer {
  // Much like Disposer from memory.h.

protected:
  // Do not declare a destructor, as doing so will force a global initializer for
  // HeapArrayDisposer::instance.

  virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
                           size_t capacity, void (*destroyElement)(void*)) const = 0;
  // Disposes of the array.  `destroyElement` invokes the destructor of each element, or is nullptr
  // if the elements have trivial destructors.  `capacity` is the amount of space that was
  // allocated while `elementCount` is the number of elements that were actually constructed;
  // these are always the same number for Array<T> but may be different when using ArrayBuilder<T>.

public:

  template <typename T>
  void dispose(T* firstElement, size_t elementCount, size_t capacity) const;
  // Helper wrapper around disposeImpl().
  //
  // Callers must not call dispose() on the same array twice, even if the first call throws
  // an exception.

private:
  template <typename T, bool hasTrivialDestructor = __has_trivial_destructor(T)>
  struct Dispose_;
};

class ExceptionSafeArrayUtil {
  // Utility class that assists in constructing or destroying elements of an array, where the
  // constructor or destructor could throw exceptions.  In case of an exception,
  // ExceptionSafeArrayUtil's destructor will call destructors on all elements that have been
  // constructed but not destroyed.  Remember that destructors that throw exceptions are required
  // to use UnwindDetector to detect unwind and avoid exceptions in this case.  Therefore, no more
  // than one exception will be thrown (and the program will not terminate).

public:
  inline ExceptionSafeArrayUtil(void* ptr, size_t elementSize, size_t constructedElementCount,
                                void (*destroyElement)(void*))
      : pos(reinterpret_cast<byte*>(ptr) + elementSize * constructedElementCount),
        elementSize(elementSize), constructedElementCount(constructedElementCount),
        destroyElement(destroyElement) {}
  KJ_DISALLOW_COPY(ExceptionSafeArrayUtil);

  inline ~ExceptionSafeArrayUtil() noexcept(false) {
    if (constructedElementCount > 0) destroyAll();
  }

  void construct(size_t count, void (*constructElement)(void*));
  // Construct the given number of elements.

  void destroyAll();
  // Destroy all elements.  Call this immediately before ExceptionSafeArrayUtil goes out-of-scope
  // to ensure that one element throwing an exception does not prevent the others from being
  // destroyed.

  void release() { constructedElementCount = 0; }
  // Prevent ExceptionSafeArrayUtil's destructor from destroying the constructed elements.
  // Call this after you've successfully finished constructing.

private:
  byte* pos;
  size_t elementSize;
  size_t constructedElementCount;
  void (*destroyElement)(void*);
};

class DestructorOnlyArrayDisposer: public ArrayDisposer {
public:
  static const DestructorOnlyArrayDisposer instance;

  void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
                   size_t capacity, void (*destroyElement)(void*)) const override;
};

class NullArrayDisposer: public ArrayDisposer {
  // An ArrayDisposer that does nothing.  Can be used to construct a fake Arrays that doesn't
  // actually own its content.

public:
  static const NullArrayDisposer instance;

  void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
                   size_t capacity, void (*destroyElement)(void*)) const override;
};

// =======================================================================================
// Array

template <typename T>
class Array {
  // An owned array which will automatically be disposed of (using an ArrayDisposer) in the
  // destructor.  Can be moved, but not copied.  Much like Own<T>, but for arrays rather than
  // single objects.

public:
  inline Array(): ptr(nullptr), size_(0), disposer(nullptr) {}
  inline Array(decltype(nullptr)): ptr(nullptr), size_(0), disposer(nullptr) {}
  inline Array(Array&& other) noexcept
      : ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
    other.ptr = nullptr;
    other.size_ = 0;
  }
  inline Array(Array<RemoveConstOrDisable<T>>&& other) noexcept
      : ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
    other.ptr = nullptr;
    other.size_ = 0;
  }
  inline Array(T* firstElement, size_t size, const ArrayDisposer& disposer)
      : ptr(firstElement), size_(size), disposer(&disposer) {}

  KJ_DISALLOW_COPY(Array);
  inline ~Array() noexcept { dispose(); }

  inline operator ArrayPtr<T>() {
    return ArrayPtr<T>(ptr, size_);
  }
  inline operator ArrayPtr<const T>() const {
    return ArrayPtr<T>(ptr, size_);
  }
  inline ArrayPtr<T> asPtr() {
    return ArrayPtr<T>(ptr, size_);
  }
  inline ArrayPtr<const T> asPtr() const {
    return ArrayPtr<T>(ptr, size_);
  }

  inline size_t size() const { return size_; }
  inline T& operator[](size_t index) const {
    KJ_IREQUIRE(index < size_, "Out-of-bounds Array access.");
    return ptr[index];
  }

  inline const T* begin() const { return ptr; }
  inline const T* end() const { return ptr + size_; }
  inline const T& front() const { return *ptr; }
  inline const T& back() const { return *(ptr + size_ - 1); }
  inline T* begin() { return ptr; }
  inline T* end() { return ptr + size_; }
  inline T& front() { return *ptr; }
  inline T& back() { return *(ptr + size_ - 1); }

  inline ArrayPtr<T> slice(size_t start, size_t end) {
    KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
    return ArrayPtr<T>(ptr + start, end - start);
  }
  inline ArrayPtr<const T> slice(size_t start, size_t end) const {
    KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
    return ArrayPtr<const T>(ptr + start, end - start);
  }

  inline ArrayPtr<const byte> asBytes() const { return asPtr().asBytes(); }
  inline ArrayPtr<PropagateConst<T, byte>> asBytes() { return asPtr().asBytes(); }
  inline ArrayPtr<const char> asChars() const { return asPtr().asChars(); }
  inline ArrayPtr<PropagateConst<T, char>> asChars() { return asPtr().asChars(); }

  inline Array<PropagateConst<T, byte>> releaseAsBytes() {
    // Like asBytes() but transfers ownership.
    static_assert(sizeof(T) == sizeof(byte),
        "releaseAsBytes() only possible on arrays with byte-size elements (e.g. chars).");
    Array<PropagateConst<T, byte>> result(
        reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_, *disposer);
    ptr = nullptr;
    size_ = 0;
    return result;
  }
  inline Array<PropagateConst<T, char>> releaseAsChars() {
    // Like asChars() but transfers ownership.
    static_assert(sizeof(T) == sizeof(PropagateConst<T, char>),
        "releaseAsChars() only possible on arrays with char-size elements (e.g. bytes).");
    Array<PropagateConst<T, char>> result(
        reinterpret_cast<PropagateConst<T, char>*>(ptr), size_, *disposer);
    ptr = nullptr;
    size_ = 0;
    return result;
  }

  inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
  inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }

  inline Array& operator=(decltype(nullptr)) {
    dispose();
    return *this;
  }

  inline Array& operator=(Array&& other) {
    dispose();
    ptr = other.ptr;
    size_ = other.size_;
    disposer = other.disposer;
    other.ptr = nullptr;
    other.size_ = 0;
    return *this;
  }

private:
  T* ptr;
  size_t size_;
  const ArrayDisposer* disposer;

  inline void dispose() {
    // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
    // dispose again.
    T* ptrCopy = ptr;
    size_t sizeCopy = size_;
    if (ptrCopy != nullptr) {
      ptr = nullptr;
      size_ = 0;
      disposer->dispose(ptrCopy, sizeCopy, sizeCopy);
    }
  }

  template <typename U>
  friend class Array;
};

static_assert(!canMemcpy<Array<char>>(), "canMemcpy<>() is broken");

namespace _ {  // private

class HeapArrayDisposer final: public ArrayDisposer {
public:
  template <typename T>
  static T* allocate(size_t count);
  template <typename T>
  static T* allocateUninitialized(size_t count);

  static const HeapArrayDisposer instance;

private:
  static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity,
                            void (*constructElement)(void*), void (*destroyElement)(void*));
  // Allocates and constructs the array.  Both function pointers are null if the constructor is
  // trivial, otherwise destroyElement is null if the constructor doesn't throw.

  virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
                           size_t capacity, void (*destroyElement)(void*)) const override;

  template <typename T, bool hasTrivialConstructor = __has_trivial_constructor(T),
                        bool hasNothrowConstructor = __has_nothrow_constructor(T)>
  struct Allocate_;
};

}  // namespace _ (private)

template <typename T>
inline Array<T> heapArray(size_t size) {
  // Much like `heap<T>()` from memory.h, allocates a new array on the heap.

  return Array<T>(_::HeapArrayDisposer::allocate<T>(size), size,
                  _::HeapArrayDisposer::instance);
}

template <typename T> Array<T> heapArray(const T* content, size_t size);
template <typename T> Array<T> heapArray(ArrayPtr<T> content);
template <typename T> Array<T> heapArray(ArrayPtr<const T> content);
template <typename T, typename Iterator> Array<T> heapArray(Iterator begin, Iterator end);
template <typename T> Array<T> heapArray(std::initializer_list<T> init);
// Allocate a heap array containing a copy of the given content.

template <typename T, typename Container>
Array<T> heapArrayFromIterable(Container&& a) { return heapArray<T>(a.begin(), a.end()); }
template <typename T>
Array<T> heapArrayFromIterable(Array<T>&& a) { return mv(a); }

// =======================================================================================
// ArrayBuilder

template <typename T>
class ArrayBuilder {
  // Class which lets you build an Array<T> specifying the exact constructor arguments for each
  // element, rather than starting by default-constructing them.

public:
  ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
  ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
  explicit ArrayBuilder(RemoveConst<T>* firstElement, size_t capacity,
                        const ArrayDisposer& disposer)
      : ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity),
        disposer(&disposer) {}
  ArrayBuilder(ArrayBuilder&& other)
      : ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) {
    other.ptr = nullptr;
    other.pos = nullptr;
    other.endPtr = nullptr;
  }
  KJ_DISALLOW_COPY(ArrayBuilder);
  inline ~ArrayBuilder() noexcept(false) { dispose(); }

  inline operator ArrayPtr<T>() {
    return arrayPtr(ptr, pos);
  }
  inline operator ArrayPtr<const T>() const {
    return arrayPtr(ptr, pos);
  }
  inline ArrayPtr<T> asPtr() {
    return arrayPtr(ptr, pos);
  }
  inline ArrayPtr<const T> asPtr() const {
    return arrayPtr(ptr, pos);
  }

  inline size_t size() const { return pos - ptr; }
  inline size_t capacity() const { return endPtr - ptr; }
  inline T& operator[](size_t index) const {
    KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access.");
    return ptr[index];
  }

  inline const T* begin() const { return ptr; }
  inline const T* end() const { return pos; }
  inline const T& front() const { return *ptr; }
  inline const T& back() const { return *(pos - 1); }
  inline T* begin() { return ptr; }
  inline T* end() { return pos; }
  inline T& front() { return *ptr; }
  inline T& back() { return *(pos - 1); }

  ArrayBuilder& operator=(ArrayBuilder&& other) {
    dispose();
    ptr = other.ptr;
    pos = other.pos;
    endPtr = other.endPtr;
    disposer = other.disposer;
    other.ptr = nullptr;
    other.pos = nullptr;
    other.endPtr = nullptr;
    return *this;
  }
  ArrayBuilder& operator=(decltype(nullptr)) {
    dispose();
    return *this;
  }

  template <typename... Params>
  T& add(Params&&... params) {
    KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder.");
    ctor(*pos, kj::fwd<Params>(params)...);
    return *pos++;
  }

  template <typename Container>
  void addAll(Container&& container) {
    addAll<decltype(container.begin()), !isReference<Container>()>(
        container.begin(), container.end());
  }

  template <typename Iterator, bool move = false>
  void addAll(Iterator start, Iterator end);

  void removeLast() {
    KJ_IREQUIRE(pos > ptr, "No elements present to remove.");
    kj::dtor(*--pos);
  }

  void truncate(size_t size) {
    KJ_IREQUIRE(size <= this->size(), "can't use truncate() to expand");

    T* target = ptr + size;
    if (__has_trivial_destructor(T)) {
      pos = target;
    } else {
      while (pos > target) {
        kj::dtor(*--pos);
      }
    }
  }

  void resize(size_t size) {
    KJ_IREQUIRE(size <= capacity(), "can't resize past capacity");

    T* target = ptr + size;
    if (target > pos) {
      // expand
      if (__has_trivial_constructor(T)) {
        pos = target;
      } else {
        while (pos < target) {
          kj::ctor(*pos++);
        }
      }
    } else {
      // truncate
      if (__has_trivial_destructor(T)) {
        pos = target;
      } else {
        while (pos > target) {
          kj::dtor(*--pos);
        }
      }
    }
  }

  Array<T> finish() {
    // We could safely remove this check if we assume that the disposer implementation doesn't
    // need to know the original capacity, as is thes case with HeapArrayDisposer since it uses
    // operator new() or if we created a custom disposer for ArrayBuilder which stores the capacity
    // in a prefix.  But that would make it hard to write cleverer heap allocators, and anyway this
    // check might catch bugs.  Probably people should use Vector if they want to build arrays
    // without knowing the final size in advance.
    KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely.");
    Array<T> result(reinterpret_cast<T*>(ptr), pos - ptr, *disposer);
    ptr = nullptr;
    pos = nullptr;
    endPtr = nullptr;
    return result;
  }

  inline bool isFull() const {
    return pos == endPtr;
  }

private:
  T* ptr;
  RemoveConst<T>* pos;
  T* endPtr;
  const ArrayDisposer* disposer;

  inline void dispose() {
    // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
    // dispose again.
    T* ptrCopy = ptr;
    T* posCopy = pos;
    T* endCopy = endPtr;
    if (ptrCopy != nullptr) {
      ptr = nullptr;
      pos = nullptr;
      endPtr = nullptr;
      disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy);
    }
  }
};

template <typename T>
inline ArrayBuilder<T> heapArrayBuilder(size_t size) {
  // Like `heapArray<T>()` but does not default-construct the elements.  You must construct them
  // manually by calling `add()`.

  return ArrayBuilder<T>(_::HeapArrayDisposer::allocateUninitialized<RemoveConst<T>>(size),
                         size, _::HeapArrayDisposer::instance);
}

// =======================================================================================
// Inline Arrays

template <typename T, size_t fixedSize>
class FixedArray {
  // A fixed-width array whose storage is allocated inline rather than on the heap.

public:
  inline size_t size() const { return fixedSize; }
  inline T* begin() { return content; }
  inline T* end() { return content + fixedSize; }
  inline const T* begin() const { return content; }
  inline const T* end() const { return content + fixedSize; }

  inline operator ArrayPtr<T>() {
    return arrayPtr(content, fixedSize);
  }
  inline operator ArrayPtr<const T>() const {
    return arrayPtr(content, fixedSize);
  }

  inline T& operator[](size_t index) { return content[index]; }
  inline const T& operator[](size_t index) const { return content[index]; }

private:
  T content[fixedSize];
};

template <typename T, size_t fixedSize>
class CappedArray {
  // Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit
  // specified by the template parameter.
  //
  // TODO(someday):  Don't construct elements past currentSize?

public:
  inline KJ_CONSTEXPR() CappedArray(): currentSize(fixedSize) {}
  inline explicit constexpr CappedArray(size_t s): currentSize(s) {}

  inline size_t size() const { return currentSize; }
  inline void setSize(size_t s) { KJ_IREQUIRE(s <= fixedSize); currentSize = s; }
  inline T* begin() { return content; }
  inline T* end() { return content + currentSize; }
  inline const T* begin() const { return content; }
  inline const T* end() const { return content + currentSize; }

  inline operator ArrayPtr<T>() {
    return arrayPtr(content, currentSize);
  }
  inline operator ArrayPtr<const T>() const {
    return arrayPtr(content, currentSize);
  }

  inline T& operator[](size_t index) { return content[index]; }
  inline const T& operator[](size_t index) const { return content[index]; }

private:
  size_t currentSize;
  T content[fixedSize];
};

// =======================================================================================
// KJ_MAP

#define KJ_MAP(elementName, array) \
  ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>(array) * \
  [&](typename ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>::Element elementName)
// Applies some function to every element of an array, returning an Array of the results,  with
// nice syntax.  Example:
//
//     StringPtr foo = "abcd";
//     Array<char> bar = KJ_MAP(c, foo) -> char { return c + 1; };
//     KJ_ASSERT(str(bar) == "bcde");

namespace _ {  // private

template <typename T>
struct Mapper {
  T array;
  Mapper(T&& array): array(kj::fwd<T>(array)) {}
  template <typename Func>
  auto operator*(Func&& func) -> Array<decltype(func(*array.begin()))> {
    auto builder = heapArrayBuilder<decltype(func(*array.begin()))>(array.size());
    for (auto iter = array.begin(); iter != array.end(); ++iter) {
      builder.add(func(*iter));
    }
    return builder.finish();
  }
  typedef decltype(*kj::instance<T>().begin()) Element;
};

template <typename T, size_t s>
struct Mapper<T(&)[s]> {
  T* array;
  Mapper(T* array): array(array) {}
  template <typename Func>
  auto operator*(Func&& func) -> Array<decltype(func(*array))> {
    auto builder = heapArrayBuilder<decltype(func(*array))>(s);
    for (size_t i = 0; i < s; i++) {
      builder.add(func(array[i]));
    }
    return builder.finish();
  }
  typedef decltype(*array)& Element;
};

}  // namespace _ (private)

// =======================================================================================
// Inline implementation details

template <typename T>
struct ArrayDisposer::Dispose_<T, true> {
  static void dispose(T* firstElement, size_t elementCount, size_t capacity,
                      const ArrayDisposer& disposer) {
    disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement),
                         sizeof(T), elementCount, capacity, nullptr);
  }
};
template <typename T>
struct ArrayDisposer::Dispose_<T, false> {
  static void destruct(void* ptr) {
    kj::dtor(*reinterpret_cast<T*>(ptr));
  }

  static void dispose(T* firstElement, size_t elementCount, size_t capacity,
                      const ArrayDisposer& disposer) {
    disposer.disposeImpl(firstElement, sizeof(T), elementCount, capacity, &destruct);
  }
};

template <typename T>
void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const {
  Dispose_<T>::dispose(firstElement, elementCount, capacity, *this);
}

namespace _ {  // private

template <typename T>
struct HeapArrayDisposer::Allocate_<T, true, true> {
  static T* allocate(size_t elementCount, size_t capacity) {
    return reinterpret_cast<T*>(allocateImpl(
        sizeof(T), elementCount, capacity, nullptr, nullptr));
  }
};
template <typename T>
struct HeapArrayDisposer::Allocate_<T, false, true> {
  static void construct(void* ptr) {
    kj::ctor(*reinterpret_cast<T*>(ptr));
  }
  static T* allocate(size_t elementCount, size_t capacity) {
    return reinterpret_cast<T*>(allocateImpl(
        sizeof(T), elementCount, capacity, &construct, nullptr));
  }
};
template <typename T>
struct HeapArrayDisposer::Allocate_<T, false, false> {
  static void construct(void* ptr) {
    kj::ctor(*reinterpret_cast<T*>(ptr));
  }
  static void destruct(void* ptr) {
    kj::dtor(*reinterpret_cast<T*>(ptr));
  }
  static T* allocate(size_t elementCount, size_t capacity) {
    return reinterpret_cast<T*>(allocateImpl(
        sizeof(T), elementCount, capacity, &construct, &destruct));
  }
};

template <typename T>
T* HeapArrayDisposer::allocate(size_t count) {
  return Allocate_<T>::allocate(count, count);
}

template <typename T>
T* HeapArrayDisposer::allocateUninitialized(size_t count) {
  return Allocate_<T, true, true>::allocate(0, count);
}

template <typename Element, typename Iterator, bool move, bool = canMemcpy<Element>()>
struct CopyConstructArray_;

template <typename T, bool move>
struct CopyConstructArray_<T, T*, move, true> {
  static inline T* apply(T* __restrict__ pos, T* start, T* end) {
    memcpy(pos, start, reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start));
    return pos + (end - start);
  }
};

template <typename T>
struct CopyConstructArray_<T, const T*, false, true> {
  static inline T* apply(T* __restrict__ pos, const T* start, const T* end) {
    memcpy(pos, start, reinterpret_cast<const byte*>(end) - reinterpret_cast<const byte*>(start));
    return pos + (end - start);
  }
};

template <typename T, typename Iterator, bool move>
struct CopyConstructArray_<T, Iterator, move, true> {
  static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
    // Since both the copy constructor and assignment operator are trivial, we know that assignment
    // is equivalent to copy-constructing.  So we can make this case somewhat easier for the
    // compiler to optimize.
    while (start != end) {
      *pos++ = *start++;
    }
    return pos;
  }
};

template <typename T, typename Iterator>
struct CopyConstructArray_<T, Iterator, false, false> {
  struct ExceptionGuard {
    T* start;
    T* pos;
    inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
    ~ExceptionGuard() noexcept(false) {
      while (pos > start) {
        dtor(*--pos);
      }
    }
  };

  static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
    // Verify that T can be *implicitly* constructed from the source values.
    if (false) implicitCast<T>(*start);

    if (noexcept(T(*start))) {
      while (start != end) {
        ctor(*pos++, *start++);
      }
      return pos;
    } else {
      // Crap.  This is complicated.
      ExceptionGuard guard(pos);
      while (start != end) {
        ctor(*guard.pos, *start++);
        ++guard.pos;
      }
      guard.start = guard.pos;
      return guard.pos;
    }
  }
};

template <typename T, typename Iterator>
struct CopyConstructArray_<T, Iterator, true, false> {
  // Actually move-construct.

  struct ExceptionGuard {
    T* start;
    T* pos;
    inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
    ~ExceptionGuard() noexcept(false) {
      while (pos > start) {
        dtor(*--pos);
      }
    }
  };

  static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
    // Verify that T can be *implicitly* constructed from the source values.
    if (false) implicitCast<T>(kj::mv(*start));

    if (noexcept(T(kj::mv(*start)))) {
      while (start != end) {
        ctor(*pos++, kj::mv(*start++));
      }
      return pos;
    } else {
      // Crap.  This is complicated.
      ExceptionGuard guard(pos);
      while (start != end) {
        ctor(*guard.pos, kj::mv(*start++));
        ++guard.pos;
      }
      guard.start = guard.pos;
      return guard.pos;
    }
  }
};

}  // namespace _ (private)

template <typename T>
template <typename Iterator, bool move>
void ArrayBuilder<T>::addAll(Iterator start, Iterator end) {
  pos = _::CopyConstructArray_<RemoveConst<T>, Decay<Iterator>, move>::apply(pos, start, end);
}

template <typename T>
Array<T> heapArray(const T* content, size_t size) {
  ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
  builder.addAll(content, content + size);
  return builder.finish();
}

template <typename T>
Array<T> heapArray(T* content, size_t size) {
  ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
  builder.addAll(content, content + size);
  return builder.finish();
}

template <typename T>
Array<T> heapArray(ArrayPtr<T> content) {
  ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
  builder.addAll(content);
  return builder.finish();
}

template <typename T>
Array<T> heapArray(ArrayPtr<const T> content) {
  ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
  builder.addAll(content);
  return builder.finish();
}

template <typename T, typename Iterator> Array<T>
heapArray(Iterator begin, Iterator end) {
  ArrayBuilder<T> builder = heapArrayBuilder<T>(end - begin);
  builder.addAll(begin, end);
  return builder.finish();
}

template <typename T>
inline Array<T> heapArray(std::initializer_list<T> init) {
  return heapArray<T>(init.begin(), init.end());
}

}  // namespace kj

#endif  // KJ_ARRAY_H_