view src/portaudio_20140130/examples/paex_ocean_shore.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7ddb4fc30dac
children
line wrap: on
line source
/** @file paex_ocean_shore.c 
	@ingroup examples_src
	@brief Generate Pink Noise using Gardner method, and make "waves". Provides an example of how to
           post stuff to/from the audio callback using lock-free FIFOs implemented by the PA ringbuffer.

	Optimization suggested by James McCartney uses a tree
	to select which random value to replace.
<pre>
	x x x x x x x x x x x x x x x x 
	x   x   x   x   x   x   x   x   
	x       x       x       x       
	 x               x               
	   x   
</pre>                            
	Tree is generated by counting trailing zeros in an increasing index.
	When the index is zero, no random number is selected.

	@author Phil Burk  http://www.softsynth.com
            Robert Bielik
*/
/*
 * $Id: paex_ocean_shore.c 1816 2012-02-22 12:20:26Z robiwan $
 *
 * This program uses the PortAudio Portable Audio Library.
 * For more information see: http://www.portaudio.com
 * Copyright (c) 1999-2000 Ross Bencina and Phil Burk
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files
 * (the "Software"), to deal in the Software without restriction,
 * including without limitation the rights to use, copy, modify, merge,
 * publish, distribute, sublicense, and/or sell copies of the Software,
 * and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
 * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

/*
 * The text above constitutes the entire PortAudio license; however, 
 * the PortAudio community also makes the following non-binding requests:
 *
 * Any person wishing to distribute modifications to the Software is
 * requested to send the modifications to the original developer so that
 * they can be incorporated into the canonical version. It is also 
 * requested that these non-binding requests be included along with the 
 * license above.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>

#include "portaudio.h"
#include "pa_ringbuffer.h"
#include "pa_util.h"

#define PINK_MAX_RANDOM_ROWS   (30)
#define PINK_RANDOM_BITS       (24)
#define PINK_RANDOM_SHIFT      ((sizeof(long)*8)-PINK_RANDOM_BITS)

typedef struct
{
    long      pink_Rows[PINK_MAX_RANDOM_ROWS];
    long      pink_RunningSum;   /* Used to optimize summing of generators. */
    int       pink_Index;        /* Incremented each sample. */
    int       pink_IndexMask;    /* Index wrapped by ANDing with this mask. */
    float     pink_Scalar;       /* Used to scale within range of -1.0 to +1.0 */
}
PinkNoise;

typedef struct 
{
    float       bq_b0;
    float       bq_b1;
    float       bq_b2;
    float       bq_a1;
    float       bq_a2;
} BiQuad;

typedef enum
{
    State_kAttack,
    State_kPreDecay,
    State_kDecay,
    State_kCnt,
} EnvState;

typedef struct
{
    PinkNoise   wave_left;
    PinkNoise   wave_right;

    BiQuad      wave_bq_coeffs;
    float       wave_bq_left[2];
    float       wave_bq_right[2];

    EnvState    wave_envelope_state;
    float       wave_envelope_level;
    float       wave_envelope_max_level;
    float       wave_pan_left;
    float       wave_pan_right;
    float       wave_attack_incr;
    float       wave_decay_incr;

} OceanWave;

/* Prototypes */
static unsigned long GenerateRandomNumber( void );
void InitializePinkNoise( PinkNoise *pink, int numRows );
float GeneratePinkNoise( PinkNoise *pink );
unsigned GenerateWave( OceanWave* wave, float* output, unsigned noOfFrames);

/************************************************************/
/* Calculate pseudo-random 32 bit number based on linear congruential method. */
static unsigned long GenerateRandomNumber( void )
{
    /* Change this seed for different random sequences. */
    static unsigned long randSeed = 22222;
    randSeed = (randSeed * 196314165) + 907633515;
    return randSeed;
}

/************************************************************/
/* Setup PinkNoise structure for N rows of generators. */
void InitializePinkNoise( PinkNoise *pink, int numRows )
{
    int i;
    long pmax;
    pink->pink_Index = 0;
    pink->pink_IndexMask = (1<<numRows) - 1;
    /* Calculate maximum possible signed random value. Extra 1 for white noise always added. */
    pmax = (numRows + 1) * (1<<(PINK_RANDOM_BITS-1));
    pink->pink_Scalar = 1.0f / pmax;
    /* Initialize rows. */
    for( i=0; i<numRows; i++ ) pink->pink_Rows[i] = 0;
    pink->pink_RunningSum = 0;
}

/* Generate Pink noise values between -1.0 and +1.0 */
float GeneratePinkNoise( PinkNoise *pink )
{
    long newRandom;
    long sum;
    float output;
    /* Increment and mask index. */
    pink->pink_Index = (pink->pink_Index + 1) & pink->pink_IndexMask;
    /* If index is zero, don't update any random values. */
    if( pink->pink_Index != 0 )
    {
        /* Determine how many trailing zeros in PinkIndex. */
        /* This algorithm will hang if n==0 so test first. */
        int numZeros = 0;
        int n = pink->pink_Index;
        while( (n & 1) == 0 )
        {
            n = n >> 1;
            numZeros++;
        }
        /* Replace the indexed ROWS random value.
         * Subtract and add back to RunningSum instead of adding all the random
         * values together. Only one changes each time.
         */
        pink->pink_RunningSum -= pink->pink_Rows[numZeros];
        newRandom = ((long)GenerateRandomNumber()) >> PINK_RANDOM_SHIFT;
        pink->pink_RunningSum += newRandom;
        pink->pink_Rows[numZeros] = newRandom;
    }

    /* Add extra white noise value. */
    newRandom = ((long)GenerateRandomNumber()) >> PINK_RANDOM_SHIFT;
    sum = pink->pink_RunningSum + newRandom;
    /* Scale to range of -1.0 to 0.9999. */
    output = pink->pink_Scalar * sum;
    return output;
}

float ProcessBiquad(const BiQuad* coeffs, float* memory, float input)
{
    float w = input - coeffs->bq_a1 * memory[0] - coeffs->bq_a2 * memory[1];
    float out = coeffs->bq_b1 * memory[0] + coeffs->bq_b2 * memory[1] + coeffs->bq_b0 * w;
    memory[1] = memory[0];
    memory[0] = w;
    return out;
}

static const float one_over_2Q_LP = 0.3f;
static const float one_over_2Q_HP = 1.0f;

unsigned GenerateWave( OceanWave* wave, float* output, unsigned noOfFrames )
{
    unsigned retval=0,i;
    float targetLevel, levelIncr, currentLevel;
    switch (wave->wave_envelope_state)
    {
    case State_kAttack:
        targetLevel = noOfFrames * wave->wave_attack_incr + wave->wave_envelope_level;
        if (targetLevel >= wave->wave_envelope_max_level)
        {
            /* Go to decay state */
            wave->wave_envelope_state = State_kPreDecay;
            targetLevel = wave->wave_envelope_max_level;
        }
        /* Calculate lowpass biquad coeffs
        
            alpha = sin(w0)/(2*Q)

                b0 =  (1 - cos(w0))/2
                b1 =   1 - cos(w0)
                b2 =  (1 - cos(w0))/2
                a0 =   1 + alpha
                a1 =  -2*cos(w0)
                a2 =   1 - alpha

            w0 = [0 - pi[
        */
        {
            const float w0 = 3.141592654f * targetLevel / wave->wave_envelope_max_level;
            const float alpha = sinf(w0) * one_over_2Q_LP;
            const float cosw0 = cosf(w0);
            const float a0_fact = 1.0f / (1.0f + alpha);
            wave->wave_bq_coeffs.bq_b1 = (1.0f - cosw0) * a0_fact;
            wave->wave_bq_coeffs.bq_b0 = wave->wave_bq_coeffs.bq_b1 * 0.5f;
            wave->wave_bq_coeffs.bq_b2 = wave->wave_bq_coeffs.bq_b0;
            wave->wave_bq_coeffs.bq_a2 = (1.0f - alpha) * a0_fact;
            wave->wave_bq_coeffs.bq_a1 = -2.0f * cosw0 * a0_fact;
        }
        break;

    case State_kPreDecay:
        /* Reset biquad state */
        memset(wave->wave_bq_left, 0, 2 * sizeof(float));
        memset(wave->wave_bq_right, 0, 2 * sizeof(float));
        wave->wave_envelope_state = State_kDecay;

        /* Deliberate fall-through */

    case State_kDecay:
        targetLevel = noOfFrames * wave->wave_decay_incr + wave->wave_envelope_level;
        if (targetLevel < 0.001f)
        {
            /* < -60 dB, we're done */
            wave->wave_envelope_state = 3;
            retval = 1;
        }
        /* Calculate highpass biquad coeffs

            alpha = sin(w0)/(2*Q)

            b0 =  (1 + cos(w0))/2
            b1 = -(1 + cos(w0))
            b2 =  (1 + cos(w0))/2
            a0 =   1 + alpha
            a1 =  -2*cos(w0)
            a2 =   1 - alpha

            w0 = [0 - pi/2[
        */
        {
            const float v = targetLevel / wave->wave_envelope_max_level;
            const float w0 = 1.5707963f * (1.0f - (v*v));
            const float alpha = sinf(w0) * one_over_2Q_HP;
            const float cosw0 = cosf(w0);
            const float a0_fact = 1.0f / (1.0f + alpha);
            wave->wave_bq_coeffs.bq_b1 = (float)(- (1 + cosw0) * a0_fact);
            wave->wave_bq_coeffs.bq_b0 = -wave->wave_bq_coeffs.bq_b1 * 0.5f;
            wave->wave_bq_coeffs.bq_b2 = wave->wave_bq_coeffs.bq_b0;
            wave->wave_bq_coeffs.bq_a2 = (float)((1.0 - alpha) * a0_fact);
            wave->wave_bq_coeffs.bq_a1 = (float)(-2.0 * cosw0 * a0_fact);
        }
        break;

    default:
        break;
    }

    currentLevel = wave->wave_envelope_level;
    wave->wave_envelope_level = targetLevel;
    levelIncr = (targetLevel - currentLevel) / noOfFrames;

    for (i = 0; i < noOfFrames; ++i, currentLevel += levelIncr)
    {
        (*output++) += ProcessBiquad(&wave->wave_bq_coeffs, wave->wave_bq_left, (GeneratePinkNoise(&wave->wave_left))) * currentLevel * wave->wave_pan_left;
        (*output++) += ProcessBiquad(&wave->wave_bq_coeffs, wave->wave_bq_right, (GeneratePinkNoise(&wave->wave_right))) * currentLevel * wave->wave_pan_right;
    }

    return retval;
}


/*******************************************************************/

/* Context for callback routine. */
typedef struct
{
    OceanWave*          waves[16];      /* Maximum 16 waves */
    unsigned            noOfActiveWaves;

    /* Ring buffer (FIFO) for "communicating" towards audio callback */
    PaUtilRingBuffer    rBufToRT;
    void*               rBufToRTData;

    /* Ring buffer (FIFO) for "communicating" from audio callback */
    PaUtilRingBuffer    rBufFromRT;
    void*               rBufFromRTData;
}
paTestData;

/* This routine will be called by the PortAudio engine when audio is needed.
** It may called at interrupt level on some machines so don't do anything
** that could mess up the system like calling malloc() or free().
*/
static int patestCallback(const void*                     inputBuffer,
                          void*                           outputBuffer,
                          unsigned long                   framesPerBuffer,
			              const PaStreamCallbackTimeInfo* timeInfo,
			              PaStreamCallbackFlags           statusFlags,
                          void*                           userData)
{
    int i;
    paTestData *data = (paTestData*)userData;
    float *out = (float*)outputBuffer;
    (void) inputBuffer; /* Prevent "unused variable" warnings. */

    /* Reset output data first */
    memset(out, 0, framesPerBuffer * 2 * sizeof(float));

    for (i = 0; i < 16; ++i)
    {
        /* Consume the input queue */
        if (data->waves[i] == 0 && PaUtil_GetRingBufferReadAvailable(&data->rBufToRT))
        {
            OceanWave* ptr = 0;
            PaUtil_ReadRingBuffer(&data->rBufToRT, &ptr, 1);
            data->waves[i] = ptr;
        }

        if (data->waves[i] != 0)
        {
            if (GenerateWave(data->waves[i], out, framesPerBuffer))
            {
                /* If wave is "done", post it back to the main thread for deletion */
                PaUtil_WriteRingBuffer(&data->rBufFromRT, &data->waves[i], 1);
                data->waves[i] = 0;
            }
        }
    }
    return paContinue;
}

#define NEW_ROW_SIZE (12 + (8*rand())/RAND_MAX)

OceanWave* InitializeWave(double SR, float attackInSeconds, float maxLevel, float positionLeftRight)
{
    OceanWave* wave = NULL;
    static unsigned lastNoOfRows = 12;
    unsigned newNoOfRows;

    wave = (OceanWave*)PaUtil_AllocateMemory(sizeof(OceanWave));
    if (wave != NULL)
    {
        InitializePinkNoise(&wave->wave_left, lastNoOfRows);
        while ((newNoOfRows = NEW_ROW_SIZE) == lastNoOfRows);
        InitializePinkNoise(&wave->wave_right, newNoOfRows);
        lastNoOfRows = newNoOfRows;

        wave->wave_envelope_state = State_kAttack;
        wave->wave_envelope_level = 0.f;
        wave->wave_envelope_max_level = maxLevel;
        wave->wave_attack_incr = wave->wave_envelope_max_level / (attackInSeconds * (float)SR);
        wave->wave_decay_incr = - wave->wave_envelope_max_level / (attackInSeconds * 4 * (float)SR);

        wave->wave_pan_left = sqrtf(1.0 - positionLeftRight);
        wave->wave_pan_right = sqrtf(positionLeftRight);
    }
    return wave;
}

static float GenerateFloatRandom(float minValue, float maxValue)
{
    return minValue + ((maxValue - minValue) * rand()) / RAND_MAX;
}

/*******************************************************************/
int main(void);
int main(void)
{
    PaStream*           stream;
    PaError             err;
    paTestData          data = {0};
    PaStreamParameters  outputParameters;
    double              tstamp;
    double              tstart;
    double              tdelta = 0;
    static const double SR  = 44100.0;
    static const int    FPB = 128; /* Frames per buffer: 2.9 ms buffers. */

    /* Initialize communication buffers (queues) */
    data.rBufToRTData = PaUtil_AllocateMemory(sizeof(OceanWave*) * 256);
    if (data.rBufToRTData == NULL)
    {
        return 1;
    }
    PaUtil_InitializeRingBuffer(&data.rBufToRT, sizeof(OceanWave*), 256, data.rBufToRTData);

    data.rBufFromRTData = PaUtil_AllocateMemory(sizeof(OceanWave*) * 256);
    if (data.rBufFromRTData == NULL)
    {
        return 1;
    }
    PaUtil_InitializeRingBuffer(&data.rBufFromRT, sizeof(OceanWave*), 256, data.rBufFromRTData);

    err = Pa_Initialize();
    if( err != paNoError ) goto error;

    /* Open a stereo PortAudio stream so we can hear the result. */
    outputParameters.device = Pa_GetDefaultOutputDevice(); /* Take the default output device. */
    if (outputParameters.device == paNoDevice) {
      fprintf(stderr,"Error: No default output device.\n");
      goto error;
    }
    outputParameters.channelCount = 2;                     /* Stereo output, most likely supported. */
    outputParameters.hostApiSpecificStreamInfo = NULL;
    outputParameters.sampleFormat = paFloat32;             /* 32 bit floating point output. */
    outputParameters.suggestedLatency = Pa_GetDeviceInfo(outputParameters.device)->defaultLowOutputLatency;
    err = Pa_OpenStream(&stream,
                        NULL,                              /* No input. */
                        &outputParameters,
                        SR,                                /* Sample rate. */
                        FPB,                               /* Frames per buffer. */
                        paDitherOff,                       /* Clip but don't dither */
                        patestCallback,
                        &data);
    if( err != paNoError ) goto error;

    err = Pa_StartStream( stream );
    if( err != paNoError ) goto error;

    printf("Stereo \"ocean waves\" for one minute...\n");

    tstart = PaUtil_GetTime();
    tstamp = tstart;
    srand( (unsigned)time(NULL) );

    while( ( err = Pa_IsStreamActive( stream ) ) == 1 )
    {
        const double tcurrent = PaUtil_GetTime();

        /* Delete "waves" that the callback is finished with */
        while (PaUtil_GetRingBufferReadAvailable(&data.rBufFromRT) > 0)
        {
            OceanWave* ptr = 0;
            PaUtil_ReadRingBuffer(&data.rBufFromRT, &ptr, 1);
            if (ptr != 0)
            {
                printf("Wave is deleted...\n");
                PaUtil_FreeMemory(ptr);
                --data.noOfActiveWaves;
            }
        }

        if (tcurrent - tstart < 60.0) /* Only start new "waves" during one minute */
        {
            if (tcurrent >= tstamp)
            {
                double tdelta = GenerateFloatRandom(1.0f, 4.0f);
                tstamp += tdelta;

                if (data.noOfActiveWaves<16)
                {
                    const float attackTime = GenerateFloatRandom(2.0f, 6.0f);
                    const float level = GenerateFloatRandom(0.1f, 1.0f);
                    const float pos = GenerateFloatRandom(0.0f, 1.0f);
                    OceanWave* p = InitializeWave(SR, attackTime, level, pos);
                    if (p != NULL)
                    {
                        /* Post wave to audio callback */
                        PaUtil_WriteRingBuffer(&data.rBufToRT, &p, 1);
                        ++data.noOfActiveWaves;

                        printf("Starting wave at level = %.2f, attack = %.2lf, pos = %.2lf\n", level, attackTime, pos);
                    }
                }
            }
        }
        else
        {
            if (data.noOfActiveWaves == 0)
            {
                printf("All waves finished!\n");
                break;
            }
        }

        Pa_Sleep(100);
    }
    if( err < 0 ) goto error;

    err = Pa_CloseStream( stream );
    if( err != paNoError ) goto error;

    if (data.rBufToRTData)
    {
        PaUtil_FreeMemory(data.rBufToRTData);
    }
    if (data.rBufFromRTData)
    {
        PaUtil_FreeMemory(data.rBufFromRTData);
    }
    
    Pa_Sleep(1000);

    Pa_Terminate();
    return 0;

error:
    Pa_Terminate();
    fprintf( stderr, "An error occured while using the portaudio stream\n" );
    fprintf( stderr, "Error number: %d\n", err );
    fprintf( stderr, "Error message: %s\n", Pa_GetErrorText( err ) );
    return 0;
}