view src/fftw-3.3.8/simd-support/simd-generic128.h @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * Generic128d added by Romain Dolbeau, and turned into simd-generic128.h
 * with single & double precision by Erik Lindahl.
 * Romain Dolbeau hereby places his modifications in the public domain.
 * Erik Lindahl hereby places his modifications in the public domain.
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
#  error "Generic simd128 only works in single or double precision"
#endif

#define SIMD_SUFFIX  _generic_simd128  /* for renaming */

#ifdef FFTW_SINGLE
#  define DS(d,s) s /* single-precision option */
#  define VDUPL(x) (V){x[0],x[0],x[2],x[2]}
#  define VDUPH(x) (V){x[1],x[1],x[3],x[3]}
#  define DVK(var, val) V var = {val,val,val,val}
#else
#  define DS(d,s) d /* double-precision option */
#  define VDUPL(x) (V){x[0],x[0]}
#  define VDUPH(x) (V){x[1],x[1]}
#  define DVK(var, val) V var = {val, val}
#endif

#define VL DS(1,2)         /* SIMD vector length, in term of complex numbers */
#define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK

typedef DS(double,float) V __attribute__ ((vector_size(16)));

#define VADD(a,b) ((a)+(b))
#define VSUB(a,b) ((a)-(b))
#define VMUL(a,b) ((a)*(b))


#define LDK(x) x

static inline V LDA(const R *x, INT ivs, const R *aligned_like)
{
     (void)aligned_like; /* UNUSED */
     (void)ivs; /* UNUSED */
     return *(const V *)x;
}

static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
{
     (void)aligned_like; /* UNUSED */
     (void)ovs; /* UNUSED */
     *(V *)x = v;
}

static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
    (void)aligned_like; /* UNUSED */
    V res;
    res[0] = x[0];
    res[1] = x[1];
#ifdef FFTW_SINGLE
    res[2] = x[ivs];
    res[3] = x[ivs+1];
#endif
    return res;
}

#ifdef FFTW_SINGLE
/* ST has to be separate due to the storage hack requiring reverse order */
static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
    (void)aligned_like; /* UNUSED */
    (void)ovs; /* UNUSED */
    *(x + ovs    ) = v[2];
    *(x + ovs + 1) = v[3];
    *(x    ) = v[0];
    *(x + 1) = v[1];
}
#else
/* FFTW_DOUBLE */
#  define ST STA
#endif

#ifdef FFTW_SINGLE
#define STM2 ST
#define STN2(x, v0, v1, ovs) /* nop */

static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs)
{
    *(x              ) = v0[0];
    *(x           + 1) = v1[0];
    *(x           + 2) = v2[0];
    *(x           + 3) = v3[0];
    *(x     + ovs    ) = v0[1];
    *(x     + ovs + 1) = v1[1];
    *(x     + ovs + 2) = v2[1];
    *(x     + ovs + 3) = v3[1];
    *(x + 2 * ovs    ) = v0[2];
    *(x + 2 * ovs + 1) = v1[2];
    *(x + 2 * ovs + 2) = v2[2];
    *(x + 2 * ovs + 3) = v3[2];
    *(x + 3 * ovs    ) = v0[3];
    *(x + 3 * ovs + 1) = v1[3];
    *(x + 3 * ovs + 2) = v2[3];
    *(x + 3 * ovs + 3) = v3[3];
}
#define STM4(x, v, ovs, aligned_like) /* no-op */


#else
/* FFTW_DOUBLE */

#define STM2 STA
#define STN2(x, v0, v1, ovs) /* nop */

static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
{
     (void)aligned_like; /* UNUSED */
     *(x) = v[0];
     *(x+ovs) = v[1];
}
#  define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
#endif


static inline V FLIP_RI(V x)
{
#ifdef FFTW_SINGLE
    return (V){x[1],x[0],x[3],x[2]};
#else
    return (V){x[1],x[0]};
#endif
}

static inline V VCONJ(V x)
{
#ifdef FFTW_SINGLE
    return (V){x[0],-x[1],x[2],-x[3]};
#else
    return (V){x[0],-x[1]};
#endif
}

static inline V VBYI(V x)
{
     x = VCONJ(x);
     x = FLIP_RI(x);
     return x;
}

/* FMA support */
#define VFMA(a, b, c) VADD(c, VMUL(a, b))
#define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
#define VFMS(a, b, c) VSUB(VMUL(a, b), c)
#define VFMAI(b, c) VADD(c, VBYI(b))
#define VFNMSI(b, c) VSUB(c, VBYI(b))
#define VFMACONJ(b,c)  VADD(VCONJ(b),c)
#define VFMSCONJ(b,c)  VSUB(VCONJ(b),c)
#define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))

static inline V VZMUL(V tx, V sr)
{
     V tr = VDUPL(tx);
     V ti = VDUPH(tx);
     tr = VMUL(sr, tr);
     sr = VBYI(sr);
     return VFMA(ti, sr, tr);
}

static inline V VZMULJ(V tx, V sr)
{
     V tr = VDUPL(tx);
     V ti = VDUPH(tx);
     tr = VMUL(sr, tr);
     sr = VBYI(sr);
     return VFNMS(ti, sr, tr);
}

static inline V VZMULI(V tx, V sr)
{
     V tr = VDUPL(tx);
     V ti = VDUPH(tx);
     ti = VMUL(ti, sr);
     sr = VBYI(sr);
     return VFMS(tr, sr, ti);
}

static inline V VZMULIJ(V tx, V sr)
{
     V tr = VDUPL(tx);
     V ti = VDUPH(tx);
     ti = VMUL(ti, sr);
     sr = VBYI(sr);
     return VFMA(tr, sr, ti);
}

/* twiddle storage #1: compact, slower */
#ifdef FFTW_SINGLE
#  define VTW1(v,x)  \
  {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
static inline V BYTW1(const R *t, V sr)
{
    return VZMUL(LDA(t, 2, t), sr);
}
static inline V BYTWJ1(const R *t, V sr)
{
    return VZMULJ(LDA(t, 2, t), sr);
}
#else /* !FFTW_SINGLE */
#  define VTW1(v,x) {TW_CEXP, v, x}
static inline V BYTW1(const R *t, V sr)
{
     V tx = LD(t, 1, t);
     return VZMUL(tx, sr);
}
static inline V BYTWJ1(const R *t, V sr)
{
     V tx = LD(t, 1, t);
     return VZMULJ(tx, sr);
}
#endif
#define TWVL1 (VL)

/* twiddle storage #2: twice the space, faster (when in cache) */
#ifdef FFTW_SINGLE
#  define VTW2(v,x)                                                     \
  {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},   \
  {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
#else /* !FFTW_SINGLE */
#  define VTW2(v,x)                                                     \
  {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
#endif
#define TWVL2 (2 * VL)
static inline V BYTW2(const R *t, V sr)
{
     const V *twp = (const V *)t;
     V si = FLIP_RI(sr);
     V tr = twp[0], ti = twp[1];
     return VFMA(tr, sr, VMUL(ti, si));
}
static inline V BYTWJ2(const R *t, V sr)
{
     const V *twp = (const V *)t;
     V si = FLIP_RI(sr);
     V tr = twp[0], ti = twp[1];
     return VFNMS(ti, si, VMUL(tr, sr));
}

/* twiddle storage #3 */
#ifdef FFTW_SINGLE
#  define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
#  define TWVL3 (VL)
#else
#  define VTW3(v,x) VTW1(v,x)
#  define TWVL3 TWVL1
#endif

/* twiddle storage for split arrays */
#ifdef FFTW_SINGLE
#  define VTWS(v,x)                                                       \
    {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
    {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
#else
#  define VTWS(v,x)                                                       \
    {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
#endif
#define TWVLS (2 * VL)

#define VLEAVE() /* nothing */

#include "simd-common.h"