view src/fftw-3.3.8/simd-support/simd-avx2.h @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * Modifications by Romain Dolbeau & Erik Lindahl, derived from simd-avx.h
 * Romain Dolbeau hereby places his modifications in the public domain.
 * Erik Lindahl hereby places his modifications in the public domain.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
#error "AVX2 only works in single or double precision"
#endif

#ifdef FFTW_SINGLE
#  define DS(d,s) s /* single-precision option */
#  define SUFF(name) name ## s
#else
#  define DS(d,s) d /* double-precision option */
#  define SUFF(name) name ## d
#endif

#define SIMD_SUFFIX  _avx2  /* for renaming */
#define VL DS(2, 4)        /* SIMD complex vector length */
#define SIMD_VSTRIDE_OKA(x) ((x) == 2) 
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK

#if defined(__GNUC__) && !defined(__AVX2__) /* sanity check */
#error "compiling simd-avx2.h without avx2 support"
#endif

#ifdef _MSC_VER
#ifndef inline
#define inline __inline
#endif
#endif

#include <immintrin.h>

typedef DS(__m256d, __m256) V;
#define VADD SUFF(_mm256_add_p)
#define VSUB SUFF(_mm256_sub_p)
#define VMUL SUFF(_mm256_mul_p)
#define VXOR SUFF(_mm256_xor_p)
#define VSHUF SUFF(_mm256_shuffle_p)
#define VPERM1 SUFF(_mm256_permute_p)

#define SHUFVALD(fp0,fp1) \
   (((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0)))
#define SHUFVALS(fp0,fp1,fp2,fp3) \
   (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))

#define VDUPL(x) DS(_mm256_movedup_pd(x), _mm256_moveldup_ps(x))
#define VDUPH(x) DS(_mm256_permute_pd(x,SHUFVALD(1,1)), _mm256_movehdup_ps(x))

#define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1))
#define DVK(var, val) V var = VLIT(val, val)
#define LDK(x) x

static inline V LDA(const R *x, INT ivs, const R *aligned_like)
{
     (void)aligned_like; /* UNUSED */
     (void)ivs; /* UNUSED */
     return SUFF(_mm256_loadu_p)(x);
}

static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
{
     (void)aligned_like; /* UNUSED */
     (void)ovs; /* UNUSED */
     SUFF(_mm256_storeu_p)(x, v);
}

#if FFTW_SINGLE

#  ifdef _MSC_VER
     /* Temporarily disable the warning "uninitialized local variable
	'name' used" and runtime checks for using a variable before it is
	defined which is erroneously triggered by the LOADL0 / LOADH macros
	as they only modify VAL partly each. */
#    ifndef __INTEL_COMPILER
#      pragma warning(disable : 4700)
#      pragma runtime_checks("u", off)
#    endif
#  endif
#  ifdef __INTEL_COMPILER
#    pragma warning(disable : 592)
#  endif

#define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
#define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
#define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val)
#define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val)

static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
     __m128 l0, l1, h0, h1;
     (void)aligned_like; /* UNUSED */
#if defined(__ICC) || (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ > 8)
     l0 = LOADL(x, SUFF(_mm_undefined_p)());
     l1 = LOADL(x + ivs, SUFF(_mm_undefined_p)());
     h0 = LOADL(x + 2*ivs, SUFF(_mm_undefined_p)());
     h1 = LOADL(x + 3*ivs, SUFF(_mm_undefined_p)());
#else
     l0 = LOADL(x, l0);
     l1 = LOADL(x + ivs, l1);
     h0 = LOADL(x + 2*ivs, h0);
     h1 = LOADL(x + 3*ivs, h1);
#endif
     l0 = SUFF(_mm_movelh_p)(l0,l1);
     h0 = SUFF(_mm_movelh_p)(h0,h1);
     return _mm256_insertf128_ps(_mm256_castps128_ps256(l0), h0, 1);
}

#  ifdef _MSC_VER
#    ifndef __INTEL_COMPILER
#      pragma warning(default : 4700)
#      pragma runtime_checks("u", restore)
#    endif
#  endif
#  ifdef __INTEL_COMPILER
#    pragma warning(default : 592)
#  endif

static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
     __m128 h = _mm256_extractf128_ps(v, 1);
     __m128 l = _mm256_castps256_ps128(v);
     (void)aligned_like; /* UNUSED */
     /* WARNING: the extra_iter hack depends upon STOREL occurring
	after STOREH */
     STOREH(x + 3*ovs, h);
     STOREL(x + 2*ovs, h);
     STOREH(x + ovs, l);
     STOREL(x, l);
}

#define STM2(x, v, ovs, aligned_like) /* no-op */
static inline void STN2(R *x, V v0, V v1, INT ovs)
{
    V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1));
    V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3));
    __m128 h0 = _mm256_extractf128_ps(x0, 1);
    __m128 l0 = _mm256_castps256_ps128(x0);
    __m128 h1 = _mm256_extractf128_ps(x1, 1);
    __m128 l1 = _mm256_castps256_ps128(x1);
    *(__m128 *)(x + 3*ovs) = h1;
    *(__m128 *)(x + 2*ovs) = h0;
    *(__m128 *)(x + 1*ovs) = l1;
    *(__m128 *)(x + 0*ovs) = l0;
}

#define STM4(x, v, ovs, aligned_like) /* no-op */
#define STN4(x, v0, v1, v2, v3, ovs)				\
{								\
     V xxx0, xxx1, xxx2, xxx3;					\
     V yyy0, yyy1, yyy2, yyy3;					\
     xxx0 = _mm256_unpacklo_ps(v0, v2);				\
     xxx1 = _mm256_unpackhi_ps(v0, v2);				\
     xxx2 = _mm256_unpacklo_ps(v1, v3);				\
     xxx3 = _mm256_unpackhi_ps(v1, v3);				\
     yyy0 = _mm256_unpacklo_ps(xxx0, xxx2);			\
     yyy1 = _mm256_unpackhi_ps(xxx0, xxx2);			\
     yyy2 = _mm256_unpacklo_ps(xxx1, xxx3);			\
     yyy3 = _mm256_unpackhi_ps(xxx1, xxx3);			\
     *(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0);	\
     *(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1);	\
     *(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1);	\
     *(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1);	\
     *(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2);	\
     *(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1);	\
     *(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3);	\
     *(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1);	\
}

#else
static inline __m128d VMOVAPD_LD(const R *x)
{
     /* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x))
	into a 256-bit vmovapd, which requires 32-byte aligment instead of
	16-byte alignment.

	Force the use of vmovapd via asm until compilers stabilize.
     */
#if defined(__GNUC__)
     __m128d var;
     __asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0]));
     return var;
#else
     return *(const __m128d *)x;
#endif
}

static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
     V var;
     (void)aligned_like; /* UNUSED */
     var = _mm256_castpd128_pd256(VMOVAPD_LD(x));
     var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1);
     return var;
}

static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
     (void)aligned_like; /* UNUSED */
     /* WARNING: the extra_iter hack depends upon the store of the low
	part occurring after the store of the high part */
     *(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1);
     *(__m128d *)x = _mm256_castpd256_pd128(v);
}


#define STM2 ST
#define STN2(x, v0, v1, ovs) /* nop */
#define STM4(x, v, ovs, aligned_like) /* no-op */

/* STN4 is a macro, not a function, thanks to Visual C++ developers
   deciding "it would be infrequent that people would want to pass more
   than 3 [__m128 parameters] by value."  Even though the comment
   was made about __m128 parameters, it appears to apply to __m256
   parameters as well. */
#define STN4(x, v0, v1, v2, v3, ovs)					\
{									\
     V xxx0, xxx1, xxx2, xxx3;						\
     xxx0 = _mm256_unpacklo_pd(v0, v1);					\
     xxx1 = _mm256_unpackhi_pd(v0, v1);					\
     xxx2 = _mm256_unpacklo_pd(v2, v3);					\
     xxx3 = _mm256_unpackhi_pd(v2, v3);					\
     STA(x,           _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \
     STA(x +     ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \
     STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \
     STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \
}
#endif

static inline V FLIP_RI(V x)
{
     return VPERM1(x, DS(SHUFVALD(1, 0), SHUFVALS(1, 0, 3, 2)));
}

static inline V VCONJ(V x)
{
     /* Produce a SIMD vector[VL] of (0 + -0i). 

        We really want to write this:

           V pmpm = VLIT(-0.0, 0.0);

        but historically some compilers have ignored the distiction
        between +0 and -0.  It looks like 'gcc-8 -fast-math' treats -0
        as 0 too.
      */
     union uvec {
          unsigned u[8];
          V v;
     };
     static const union uvec pmpm = {
#ifdef FFTW_SINGLE
          { 0x00000000, 0x80000000, 0x00000000, 0x80000000,
            0x00000000, 0x80000000, 0x00000000, 0x80000000 }
#else
          { 0x00000000, 0x00000000, 0x00000000, 0x80000000,
            0x00000000, 0x00000000, 0x00000000, 0x80000000 }
#endif
     };
     return VXOR(pmpm.v, x);
}

static inline V VBYI(V x)
{
     return FLIP_RI(VCONJ(x));
}

/* FMA support */
#define VFMA    SUFF(_mm256_fmadd_p)
#define VFNMS   SUFF(_mm256_fnmadd_p)
#define VFMS    SUFF(_mm256_fmsub_p)
#define VFMAI(b, c) SUFF(_mm256_addsub_p)(c, FLIP_RI(b)) /* VADD(c, VBYI(b)) */
#define VFNMSI(b, c)   VSUB(c, VBYI(b))
#define VFMACONJ(b,c)  VADD(VCONJ(b),c)
#define VFMSCONJ(b,c)  VSUB(VCONJ(b),c)
#define VFNMSCONJ(b,c) SUFF(_mm256_addsub_p)(c, b)  /* VSUB(c, VCONJ(b)) */

static inline V VZMUL(V tx, V sr)
{
     /* V tr = VDUPL(tx); */
     /* V ti = VDUPH(tx); */
     /* tr = VMUL(sr, tr); */
     /* sr = VBYI(sr); */
     /* return VFMA(ti, sr, tr); */
     return SUFF(_mm256_fmaddsub_p)(sr, VDUPL(tx), VMUL(FLIP_RI(sr), VDUPH(tx)));
}

static inline V VZMULJ(V tx, V sr)
{
     /* V tr = VDUPL(tx); */
     /* V ti = VDUPH(tx); */
     /* tr = VMUL(sr, tr); */
     /* sr = VBYI(sr); */
     /* return VFNMS(ti, sr, tr); */
     return SUFF(_mm256_fmsubadd_p)(sr, VDUPL(tx), VMUL(FLIP_RI(sr), VDUPH(tx)));
}

static inline V VZMULI(V tx, V sr)
{
     V tr = VDUPL(tx);
     V ti = VDUPH(tx);
     ti = VMUL(ti, sr);
     sr = VBYI(sr);
     return VFMS(tr, sr, ti);
    /*
     * Keep the old version
     * (2 permute, 1 shuffle, 1 constant load (L1), 1 xor, 2 fp), since the below FMA one
     * would be 2 permute, 1 shuffle, 1 xor (setzero), 3 fp), but with a longer pipeline.
     *
     * Alternative new fma version:
     * return SUFF(_mm256_addsub_p)(SUFF(_mm256_fnmadd_p)(sr, VDUPH(tx), SUFF(_mm256_setzero_p)()),
     * VMUL(FLIP_RI(sr), VDUPL(tx)));
    */
}

static inline V VZMULIJ(V tx, V sr)
{
     /* V tr = VDUPL(tx); */
     /* V ti = VDUPH(tx); */
     /* ti = VMUL(ti, sr); */
     /* sr = VBYI(sr); */
     /* return VFMA(tr, sr, ti); */
     return SUFF(_mm256_fmaddsub_p)(sr, VDUPH(tx), VMUL(FLIP_RI(sr), VDUPL(tx)));
}

/* twiddle storage #1: compact, slower */
#ifdef FFTW_SINGLE
# define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}
#else
# define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
#endif
#define TWVL1 (VL)

static inline V BYTW1(const R *t, V sr)
{
     return VZMUL(LDA(t, 2, t), sr);
}

static inline V BYTWJ1(const R *t, V sr)
{
     return VZMULJ(LDA(t, 2, t), sr);
}

/* twiddle storage #2: twice the space, faster (when in cache) */
#ifdef FFTW_SINGLE
# define VTW2(v,x)							\
   {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},	\
   {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \
   {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \
   {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x}
#else
# define VTW2(v,x)							\
   {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},	\
   {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
#endif
#define TWVL2 (2 * VL)

static inline V BYTW2(const R *t, V sr)
{
     const V *twp = (const V *)t;
     V si = FLIP_RI(sr);
     V tr = twp[0], ti = twp[1];
     return VFMA(tr, sr, VMUL(ti, si));
}

static inline V BYTWJ2(const R *t, V sr)
{
     const V *twp = (const V *)t;
     V si = FLIP_RI(sr);
     V tr = twp[0], ti = twp[1];
     return VFNMS(ti, si, VMUL(tr, sr));
}

/* twiddle storage #3 */
#define VTW3 VTW1
#define TWVL3 TWVL1

/* twiddle storage for split arrays */
#ifdef FFTW_SINGLE
# define VTWS(v,x)							\
  {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x},	\
  {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \
  {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x},	\
  {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x}
#else
# define VTWS(v,x)							\
  {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x},	\
  {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}	
#endif
#define TWVLS (2 * VL)

#define VLEAVE _mm256_zeroupper

#include "simd-common.h"