view src/fftw-3.3.8/simd-support/simd-avx.h @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
#error "AVX only works in single or double precision"
#endif

#ifdef FFTW_SINGLE
#  define DS(d,s) s /* single-precision option */
#  define SUFF(name) name ## s
#else
#  define DS(d,s) d /* double-precision option */
#  define SUFF(name) name ## d
#endif

#define SIMD_SUFFIX  _avx  /* for renaming */
#define VL DS(2, 4)        /* SIMD complex vector length */
#define SIMD_VSTRIDE_OKA(x) ((x) == 2) 
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK

#if defined(__GNUC__) && !defined(__AVX__) /* sanity check */
#error "compiling simd-avx.h without -mavx"
#endif

#ifdef _MSC_VER
#ifndef inline
#define inline __inline
#endif
#endif

#include <immintrin.h>

typedef DS(__m256d, __m256) V;
#define VADD SUFF(_mm256_add_p)
#define VSUB SUFF(_mm256_sub_p)
#define VMUL SUFF(_mm256_mul_p)
#define VXOR SUFF(_mm256_xor_p)
#define VSHUF SUFF(_mm256_shuffle_p)

#define SHUFVALD(fp0,fp1) \
   (((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0)))
#define SHUFVALS(fp0,fp1,fp2,fp3) \
   (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))

#define VDUPL(x) DS(_mm256_unpacklo_pd(x, x), VSHUF(x, x, SHUFVALS(0, 0, 2, 2)))
#define VDUPH(x) DS(_mm256_unpackhi_pd(x, x), VSHUF(x, x, SHUFVALS(1, 1, 3, 3)))

#define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1))
#define DVK(var, val) V var = VLIT(val, val)
#define LDK(x) x

static inline V LDA(const R *x, INT ivs, const R *aligned_like)
{
     (void)aligned_like; /* UNUSED */
     (void)ivs; /* UNUSED */
     return SUFF(_mm256_loadu_p)(x);
}

static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
{
     (void)aligned_like; /* UNUSED */
     (void)ovs; /* UNUSED */
     SUFF(_mm256_storeu_p)(x, v);
}

#if FFTW_SINGLE

#  ifdef _MSC_VER
     /* Temporarily disable the warning "uninitialized local variable
	'name' used" and runtime checks for using a variable before it is
	defined which is erroneously triggered by the LOADL0 / LOADH macros
	as they only modify VAL partly each. */
#    ifndef __INTEL_COMPILER
#      pragma warning(disable : 4700)
#      pragma runtime_checks("u", off)
#    endif
#  endif
#  ifdef __INTEL_COMPILER
#    pragma warning(disable : 592)
#  endif

#define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
#define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
#define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val)
#define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val)

/* it seems like the only AVX way to store 4 complex floats is to
   extract two pairs of complex floats into two __m128 registers, and
   then use SSE-like half-stores.  Similarly, to load 4 complex
   floats, we load two pairs of complex floats into two __m128
   registers, and then pack the two __m128 registers into one __m256
   value. */
static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
     __m128 l, h;
     V v;
     (void)aligned_like; /* UNUSED */
     l = LOADL(x, l);
     l = LOADH(x + ivs, l);
     h = LOADL(x + 2*ivs, h);
     h = LOADH(x + 3*ivs, h);
     v = _mm256_castps128_ps256(l);
     v = _mm256_insertf128_ps(v, h, 1);
     return v;
}

#  ifdef _MSC_VER
#    ifndef __INTEL_COMPILER
#      pragma warning(default : 4700)
#      pragma runtime_checks("u", restore)
#    endif
#  endif
#  ifdef __INTEL_COMPILER
#    pragma warning(default : 592)
#  endif

static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
     __m128 h = _mm256_extractf128_ps(v, 1);
     __m128 l = _mm256_castps256_ps128(v);
     (void)aligned_like; /* UNUSED */
     /* WARNING: the extra_iter hack depends upon STOREL occurring
	after STOREH */
     STOREH(x + 3*ovs, h);
     STOREL(x + 2*ovs, h);
     STOREH(x + ovs, l);
     STOREL(x, l);
}

#define STM2(x, v, ovs, aligned_like) /* no-op */
static inline void STN2(R *x, V v0, V v1, INT ovs)
{
    V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1));
    V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3));
    __m128 h0 = _mm256_extractf128_ps(x0, 1);
    __m128 l0 = _mm256_castps256_ps128(x0);
    __m128 h1 = _mm256_extractf128_ps(x1, 1);
    __m128 l1 = _mm256_castps256_ps128(x1);

    *(__m128 *)(x + 3*ovs) = h1;
    *(__m128 *)(x + 2*ovs) = h0;
    *(__m128 *)(x + 1*ovs) = l1;
    *(__m128 *)(x + 0*ovs) = l0;
}

#define STM4(x, v, ovs, aligned_like) /* no-op */
#define STN4(x, v0, v1, v2, v3, ovs)				\
{								\
     V xxx0, xxx1, xxx2, xxx3;					\
     V yyy0, yyy1, yyy2, yyy3;					\
     xxx0 = _mm256_unpacklo_ps(v0, v2);				\
     xxx1 = _mm256_unpackhi_ps(v0, v2);				\
     xxx2 = _mm256_unpacklo_ps(v1, v3);				\
     xxx3 = _mm256_unpackhi_ps(v1, v3);				\
     yyy0 = _mm256_unpacklo_ps(xxx0, xxx2);			\
     yyy1 = _mm256_unpackhi_ps(xxx0, xxx2);			\
     yyy2 = _mm256_unpacklo_ps(xxx1, xxx3);			\
     yyy3 = _mm256_unpackhi_ps(xxx1, xxx3);			\
     *(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0);	\
     *(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1);	\
     *(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1);	\
     *(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1);	\
     *(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2);	\
     *(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1);	\
     *(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3);	\
     *(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1);	\
}

#else
static inline __m128d VMOVAPD_LD(const R *x)
{
     /* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x))
	into a 256-bit vmovapd, which requires 32-byte aligment instead of
	16-byte alignment.

	Force the use of vmovapd via asm until compilers stabilize.
     */
#if defined(__GNUC__)
     __m128d var;
     __asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0]));
     return var;
#else
     return *(const __m128d *)x;
#endif
}

static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
     V var;
     (void)aligned_like; /* UNUSED */
     var = _mm256_castpd128_pd256(VMOVAPD_LD(x));
     var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1);
     return var;
}

static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
     (void)aligned_like; /* UNUSED */
     /* WARNING: the extra_iter hack depends upon the store of the low
	part occurring after the store of the high part */
     *(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1);
     *(__m128d *)x = _mm256_castpd256_pd128(v);
}


#define STM2 ST
#define STN2(x, v0, v1, ovs) /* nop */
#define STM4(x, v, ovs, aligned_like) /* no-op */

/* STN4 is a macro, not a function, thanks to Visual C++ developers
   deciding "it would be infrequent that people would want to pass more
   than 3 [__m128 parameters] by value."  Even though the comment
   was made about __m128 parameters, it appears to apply to __m256
   parameters as well. */
#define STN4(x, v0, v1, v2, v3, ovs)					\
{									\
     V xxx0, xxx1, xxx2, xxx3;						\
     xxx0 = _mm256_unpacklo_pd(v0, v1);					\
     xxx1 = _mm256_unpackhi_pd(v0, v1);					\
     xxx2 = _mm256_unpacklo_pd(v2, v3);					\
     xxx3 = _mm256_unpackhi_pd(v2, v3);					\
     STA(x,           _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \
     STA(x +     ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \
     STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \
     STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \
}
#endif

static inline V FLIP_RI(V x)
{
     return VSHUF(x, x,
		  DS(SHUFVALD(1, 0), 
		     SHUFVALS(1, 0, 3, 2)));
}

static inline V VCONJ(V x)
{
     /* Produce a SIMD vector[VL] of (0 + -0i). 

        We really want to write this:

           V pmpm = VLIT(-0.0, 0.0);

        but historically some compilers have ignored the distiction
        between +0 and -0.  It looks like 'gcc-8 -fast-math' treats -0
        as 0 too.
      */
     union uvec {
          unsigned u[8];
          V v;
     };
     static const union uvec pmpm = {
#ifdef FFTW_SINGLE
          { 0x00000000, 0x80000000, 0x00000000, 0x80000000,
            0x00000000, 0x80000000, 0x00000000, 0x80000000 }
#else
          { 0x00000000, 0x00000000, 0x00000000, 0x80000000,
            0x00000000, 0x00000000, 0x00000000, 0x80000000 }
#endif
     };
     return VXOR(pmpm.v, x);
}

static inline V VBYI(V x)
{
     return FLIP_RI(VCONJ(x));
}

/* FMA support */
#define VFMA(a, b, c) VADD(c, VMUL(a, b))
#define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
#define VFMS(a, b, c) VSUB(VMUL(a, b), c)
#define VFMAI(b, c) VADD(c, VBYI(b))
#define VFNMSI(b, c) VSUB(c, VBYI(b))
#define VFMACONJ(b,c)  VADD(VCONJ(b),c)
#define VFMSCONJ(b,c)  VSUB(VCONJ(b),c)
#define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))

static inline V VZMUL(V tx, V sr)
{
     V tr = VDUPL(tx);
     V ti = VDUPH(tx);
     tr = VMUL(sr, tr);
     sr = VBYI(sr);
     return VFMA(ti, sr, tr);
}

static inline V VZMULJ(V tx, V sr)
{
     V tr = VDUPL(tx);
     V ti = VDUPH(tx);
     tr = VMUL(sr, tr);
     sr = VBYI(sr);
     return VFNMS(ti, sr, tr);
}

static inline V VZMULI(V tx, V sr)
{
     V tr = VDUPL(tx);
     V ti = VDUPH(tx);
     ti = VMUL(ti, sr);
     sr = VBYI(sr);
     return VFMS(tr, sr, ti);
}

static inline V VZMULIJ(V tx, V sr)
{
     V tr = VDUPL(tx);
     V ti = VDUPH(tx);
     ti = VMUL(ti, sr);
     sr = VBYI(sr);
     return VFMA(tr, sr, ti);
}

/* twiddle storage #1: compact, slower */
#ifdef FFTW_SINGLE
# define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}
#else
# define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
#endif
#define TWVL1 (VL)

static inline V BYTW1(const R *t, V sr)
{
     return VZMUL(LDA(t, 2, t), sr);
}

static inline V BYTWJ1(const R *t, V sr)
{
     return VZMULJ(LDA(t, 2, t), sr);
}

/* twiddle storage #2: twice the space, faster (when in cache) */
#ifdef FFTW_SINGLE
# define VTW2(v,x)							\
   {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},	\
   {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \
   {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \
   {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x}
#else
# define VTW2(v,x)							\
   {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},	\
   {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
#endif
#define TWVL2 (2 * VL)

static inline V BYTW2(const R *t, V sr)
{
     const V *twp = (const V *)t;
     V si = FLIP_RI(sr);
     V tr = twp[0], ti = twp[1];
     return VFMA(tr, sr, VMUL(ti, si));
}

static inline V BYTWJ2(const R *t, V sr)
{
     const V *twp = (const V *)t;
     V si = FLIP_RI(sr);
     V tr = twp[0], ti = twp[1];
     return VFNMS(ti, si, VMUL(tr, sr));
}

/* twiddle storage #3 */
#define VTW3 VTW1
#define TWVL3 TWVL1

/* twiddle storage for split arrays */
#ifdef FFTW_SINGLE
# define VTWS(v,x)							\
  {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x},	\
  {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \
  {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x},	\
  {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x}
#else
# define VTWS(v,x)							\
  {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x},	\
  {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}	
#endif
#define TWVLS (2 * VL)


/* Use VZEROUPPER to avoid the penalty of switching from AVX to SSE.
   See Intel Optimization Manual (April 2011, version 248966), Section
   11.3 */
#define VLEAVE _mm256_zeroupper

#include "simd-common.h"