view src/fftw-3.3.8/rdft/rdft2-rdft.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


#include "rdft/rdft.h"

typedef struct {
     solver super;
} S;

typedef struct {
     plan_rdft2 super;

     plan *cld, *cldrest;
     INT n, vl, nbuf, bufdist;
     INT cs, ivs, ovs;
} P;

/***************************************************************************/

/* FIXME: have alternate copy functions that push a vector loop inside
   the n loops? */

/* copy halfcomplex array r (contiguous) to complex (strided) array rio/iio. */
static void hc2c(INT n, R *r, R *rio, R *iio, INT os)
{
     INT i;

     rio[0] = r[0];
     iio[0] = 0;

     for (i = 1; i + i < n; ++i) {
	  rio[i * os] = r[i];
	  iio[i * os] = r[n - i];
     }

     if (i + i == n) {	/* store the Nyquist frequency */
	  rio[i * os] = r[i];
	  iio[i * os] = K(0.0);
     }
}

/* reverse of hc2c */
static void c2hc(INT n, R *rio, R *iio, INT is, R *r)
{
     INT i;

     r[0] = rio[0];

     for (i = 1; i + i < n; ++i) {
	  r[i] = rio[i * is];
	  r[n - i] = iio[i * is];
     }

     if (i + i == n)		/* store the Nyquist frequency */
	  r[i] = rio[i * is];
}

/***************************************************************************/

static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
{
     const P *ego = (const P *) ego_;
     plan_rdft *cld = (plan_rdft *) ego->cld;
     INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
     INT n = ego->n;
     INT ivs = ego->ivs, ovs = ego->ovs, os = ego->cs;
     R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
     plan_rdft2 *cldrest;

     for (i = nbuf; i <= vl; i += nbuf) {
          /* transform to bufs: */
          cld->apply((plan *) cld, r0, bufs);
	  r0 += ivs * nbuf; r1 += ivs * nbuf;

          /* copy back */
	  for (j = 0; j < nbuf; ++j, cr += ovs, ci += ovs)
	       hc2c(n, bufs + j*bufdist, cr, ci, os);
     }

     X(ifree)(bufs);

     /* Do the remaining transforms, if any: */
     cldrest = (plan_rdft2 *) ego->cldrest;
     cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
}

static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
{
     const P *ego = (const P *) ego_;
     plan_rdft *cld = (plan_rdft *) ego->cld;
     INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
     INT n = ego->n;
     INT ivs = ego->ivs, ovs = ego->ovs, is = ego->cs;
     R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
     plan_rdft2 *cldrest;

     for (i = nbuf; i <= vl; i += nbuf) {
          /* copy to bufs */
	  for (j = 0; j < nbuf; ++j, cr += ivs, ci += ivs)
	       c2hc(n, cr, ci, is, bufs + j*bufdist);

          /* transform back: */
          cld->apply((plan *) cld, bufs, r0);
	  r0 += ovs * nbuf; r1 += ovs * nbuf;
     }

     X(ifree)(bufs);

     /* Do the remaining transforms, if any: */
     cldrest = (plan_rdft2 *) ego->cldrest;
     cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
}

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;

     X(plan_awake)(ego->cld, wakefulness);
     X(plan_awake)(ego->cldrest, wakefulness);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(plan_destroy_internal)(ego->cldrest);
     X(plan_destroy_internal)(ego->cld);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     p->print(p, "(rdft2-rdft-%s-%D%v/%D-%D%(%p%)%(%p%))",
	      ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
              ego->n, ego->nbuf,
              ego->vl, ego->bufdist % ego->n,
              ego->cld, ego->cldrest);
}

static INT min_nbuf(const problem_rdft2 *p, INT n, INT vl)
{
     INT is, os, ivs, ovs;

     if (p->r0 != p->cr)
	  return 1;
     if (X(rdft2_inplace_strides(p, RNK_MINFTY)))
	  return 1;
     A(p->vecsz->rnk == 1); /*  rank 0 and MINFTY are inplace */

     X(rdft2_strides)(p->kind, p->sz->dims, &is, &os);
     X(rdft2_strides)(p->kind, p->vecsz->dims, &ivs, &ovs);
     
     /* handle one potentially common case: "contiguous" real and
	complex arrays, which overlap because of the differing sizes. */
     if (n * X(iabs)(is) <= X(iabs)(ivs)
	 && (n/2 + 1) * X(iabs)(os) <= X(iabs)(ovs)
	 && ( ((p->cr - p->ci) <= X(iabs)(os)) || 
	      ((p->ci - p->cr) <= X(iabs)(os)) )
	 && ivs > 0 && ovs > 0) {
	  INT vsmin = X(imin)(ivs, ovs);
	  INT vsmax = X(imax)(ivs, ovs);
	  return(((vsmax - vsmin) * vl + vsmin - 1) / vsmin);
     }

     return vl; /* punt: just buffer the whole vector */
}

static int applicable0(const problem *p_, const S *ego, const planner *plnr)
{
     const problem_rdft2 *p = (const problem_rdft2 *) p_;
     UNUSED(ego);
     return(1
	    && p->vecsz->rnk <= 1
	    && p->sz->rnk == 1

	    /* FIXME: does it make sense to do R2HCII ? */
	    && (p->kind == R2HC || p->kind == HC2R)

	    /* real strides must allow for reduction to rdft */
	    && (2 * (p->r1 - p->r0) ==
		(((p->kind == R2HC) ? p->sz->dims[0].is : p->sz->dims[0].os)))

	    && !(X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr))
	  );
}

static int applicable(const problem *p_, const S *ego, const planner *plnr)
{
     const problem_rdft2 *p;

     if (NO_BUFFERINGP(plnr)) return 0;

     if (!applicable0(p_, ego, plnr)) return 0;

     p = (const problem_rdft2 *) p_;
     if (NO_UGLYP(plnr)) {
	  if (p->r0 != p->cr) return 0;
	  if (X(toobig)(p->sz->dims[0].n)) return 0;
     }
     return 1;
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const S *ego = (const S *) ego_;
     P *pln;
     plan *cld = (plan *) 0;
     plan *cldrest = (plan *) 0;
     const problem_rdft2 *p = (const problem_rdft2 *) p_;
     R *bufs = (R *) 0;
     INT nbuf = 0, bufdist, n, vl;
     INT ivs, ovs, rs, id, od;

     static const plan_adt padt = {
	  X(rdft2_solve), awake, print, destroy
     };

     if (!applicable(p_, ego, plnr))
          goto nada;

     n = p->sz->dims[0].n;
     X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);

     nbuf = X(imax)(X(nbuf)(n, vl, 0), min_nbuf(p, n, vl));
     bufdist = X(bufdist)(n, vl);
     A(nbuf > 0);

     /* initial allocation for the purpose of planning */
     bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);

     id = ivs * (nbuf * (vl / nbuf));
     od = ovs * (nbuf * (vl / nbuf));

     if (p->kind == R2HC) {
	  cld = X(mkplan_f_d)(
	       plnr,
	       X(mkproblem_rdft_d)(
		    X(mktensor_1d)(n, p->sz->dims[0].is/2, 1),
		    X(mktensor_1d)(nbuf, ivs, bufdist),
		    TAINT(p->r0, ivs * nbuf), bufs, &p->kind),
	       0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0);
	  if (!cld) goto nada;
	  X(ifree)(bufs); bufs = 0;

	  cldrest = X(mkplan_d)(plnr, 
				X(mkproblem_rdft2_d)(
				     X(tensor_copy)(p->sz),
				     X(mktensor_1d)(vl % nbuf, ivs, ovs),
				     p->r0 + id, p->r1 + id, 
				     p->cr + od, p->ci + od,
				     p->kind));
	  if (!cldrest) goto nada;

	  pln = MKPLAN_RDFT2(P, &padt, apply_r2hc);
     } else {
	  A(p->kind == HC2R);
	  cld = X(mkplan_f_d)(
	       plnr,
	       X(mkproblem_rdft_d)(
		    X(mktensor_1d)(n, 1, p->sz->dims[0].os/2),
		    X(mktensor_1d)(nbuf, bufdist, ovs),
		    bufs, TAINT(p->r0, ovs * nbuf), &p->kind),
	       0, 0, NO_DESTROY_INPUT); /* always ok to destroy bufs */
	  if (!cld) goto nada;
	  X(ifree)(bufs); bufs = 0;

	  cldrest = X(mkplan_d)(plnr, 
				X(mkproblem_rdft2_d)(
				     X(tensor_copy)(p->sz),
				     X(mktensor_1d)(vl % nbuf, ivs, ovs),
				     p->r0 + od, p->r1 + od, 
				     p->cr + id, p->ci + id,
				     p->kind));
	  if (!cldrest) goto nada;
	  pln = MKPLAN_RDFT2(P, &padt, apply_hc2r);
     }

     pln->cld = cld;
     pln->cldrest = cldrest;
     pln->n = n;
     pln->vl = vl;
     pln->ivs = ivs;
     pln->ovs = ovs;
     X(rdft2_strides)(p->kind, &p->sz->dims[0], &rs, &pln->cs);
     pln->nbuf = nbuf;
     pln->bufdist = bufdist;

     X(ops_madd)(vl / nbuf, &cld->ops, &cldrest->ops,
		 &pln->super.super.ops);
     pln->super.super.ops.other += (p->kind == R2HC ? (n + 2) : n) * vl;

     return &(pln->super.super);

 nada:
     X(ifree0)(bufs);
     X(plan_destroy_internal)(cldrest);
     X(plan_destroy_internal)(cld);
     return (plan *) 0;
}

static solver *mksolver(void)
{
     static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     return &(slv->super);
}

void X(rdft2_rdft_register)(planner *p)
{
     REGISTER_SOLVER(p, mksolver());
}