view src/fftw-3.3.8/rdft/rank0.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


/* plans for rank-0 RDFTs (copy operations) */

#include "rdft/rdft.h"

#ifdef HAVE_STRING_H
#include <string.h>		/* for memcpy() */
#endif

#define MAXRNK 32 /* FIXME: should malloc() */

typedef struct {
     plan_rdft super;
     INT vl;
     int rnk;
     iodim d[MAXRNK];
     const char *nam;
} P;

typedef struct {
     solver super;
     rdftapply apply;
     int (*applicable)(const P *pln, const problem_rdft *p);
     const char *nam;
} S;

/* copy up to MAXRNK dimensions from problem into plan.  If a
   contiguous dimension exists, save its length in pln->vl */
static int fill_iodim(P *pln, const problem_rdft *p)
{
     int i;
     const tensor *vecsz = p->vecsz;

     pln->vl = 1;
     pln->rnk = 0;
     for (i = 0; i < vecsz->rnk; ++i) {
	  /* extract contiguous dimensions */
	  if (pln->vl == 1 &&
	      vecsz->dims[i].is == 1 && vecsz->dims[i].os == 1) 
	       pln->vl = vecsz->dims[i].n;
	  else if (pln->rnk == MAXRNK) 
	       return 0;
	  else 
	       pln->d[pln->rnk++] = vecsz->dims[i];
     }

     return 1;
}

/* generic higher-rank copy routine, calls cpy2d() to do the real work */
static void copy(const iodim *d, int rnk, INT vl,
		 R *I, R *O,
		 cpy2d_func cpy2d)
{
     A(rnk >= 2);
     if (rnk == 2)
	  cpy2d(I, O, d[0].n, d[0].is, d[0].os, d[1].n, d[1].is, d[1].os, vl);
     else {
	  INT i;
	  for (i = 0; i < d[0].n; ++i, I += d[0].is, O += d[0].os)
	       copy(d + 1, rnk - 1, vl, I, O, cpy2d);
     }
}

/* FIXME: should be more general */
static int transposep(const P *pln)
{
     int i;

     for (i = 0; i < pln->rnk - 2; ++i) 
	  if (pln->d[i].is != pln->d[i].os)
	       return 0;
     
     return (pln->d[i].n == pln->d[i+1].n &&
	     pln->d[i].is == pln->d[i+1].os &&
	     pln->d[i].os == pln->d[i+1].is);
}

/* generic higher-rank transpose routine, calls transpose2d() to do
 * the real work */
static void transpose(const iodim *d, int rnk, INT vl,
		      R *I,
		      transpose_func transpose2d)
{
     A(rnk >= 2);
     if (rnk == 2)
	  transpose2d(I, d[0].n, d[0].is, d[0].os, vl);
     else {
	  INT i;
	  for (i = 0; i < d[0].n; ++i, I += d[0].is)
	       transpose(d + 1, rnk - 1, vl, I, transpose2d);
     }
}

/**************************************************************/
/* rank 0,1,2, out of place, iterative */
static void apply_iter(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;

     switch (ego->rnk) {
	 case 0: 
	      X(cpy1d)(I, O, ego->vl, 1, 1, 1);
	      break;
	 case 1:
	      X(cpy1d)(I, O, 
		       ego->d[0].n, ego->d[0].is, ego->d[0].os, 
		       ego->vl);
	      break;
	 default:
	      copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_ci));
	      break;
     }
}

static int applicable_iter(const P *pln, const problem_rdft *p)
{
     UNUSED(pln);
     return (p->I != p->O);
}

/**************************************************************/
/* out of place, write contiguous output */
static void apply_cpy2dco(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_co));
}

static int applicable_cpy2dco(const P *pln, const problem_rdft *p)
{
     int rnk = pln->rnk;
     return (1
	     && p->I != p->O
	     && rnk >= 2

	     /* must not duplicate apply_iter */
	     && (X(iabs)(pln->d[rnk - 2].is) <= X(iabs)(pln->d[rnk - 1].is)
		 ||
		 X(iabs)(pln->d[rnk - 2].os) <= X(iabs)(pln->d[rnk - 1].os))
	  );
}

/**************************************************************/
/* out of place, tiled, no buffering */
static void apply_tiled(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiled));
}

static int applicable_tiled(const P *pln, const problem_rdft *p)
{
     return (1
	     && p->I != p->O
	     && pln->rnk >= 2

	     /* somewhat arbitrary */
	     && X(compute_tilesz)(pln->vl, 1) > 4
	  );
}

/**************************************************************/
/* out of place, tiled, with buffer */
static void apply_tiledbuf(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiledbuf));
}

#define applicable_tiledbuf applicable_tiled

/**************************************************************/
/* rank 0, out of place, using memcpy */
static void apply_memcpy(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;

     A(ego->rnk == 0);
     memcpy(O, I, ego->vl * sizeof(R));
}

static int applicable_memcpy(const P *pln, const problem_rdft *p)
{
     return (1
	     && p->I != p->O 
	     && pln->rnk == 0
	     && pln->vl > 2 /* do not bother memcpy-ing complex numbers */
	     );
}

/**************************************************************/
/* rank > 0 vecloop, out of place, using memcpy (e.g. out-of-place
   transposes of vl-tuples ... for large vl it should be more
   efficient to use memcpy than the tiled stuff). */

static void memcpy_loop(size_t cpysz, int rnk, const iodim *d, R *I, R *O)
{
     INT i, n = d->n, is = d->is, os = d->os;
     if (rnk == 1)
	  for (i = 0; i < n; ++i, I += is, O += os)
	       memcpy(O, I, cpysz);
     else {
	  --rnk; ++d;
	  for (i = 0; i < n; ++i, I += is, O += os)
	       memcpy_loop(cpysz, rnk, d, I, O);
     }
}

static void apply_memcpy_loop(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     memcpy_loop(ego->vl * sizeof(R), ego->rnk, ego->d, I, O);
}

static int applicable_memcpy_loop(const P *pln, const problem_rdft *p)
{
     return (p->I != p->O
	     && pln->rnk > 0
             && pln->vl > 2 /* do not bother memcpy-ing complex numbers */);
}

/**************************************************************/
/* rank 2, in place, square transpose, iterative */
static void apply_ip_sq(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     UNUSED(O);
     transpose(ego->d, ego->rnk, ego->vl, I, X(transpose));
}


static int applicable_ip_sq(const P *pln, const problem_rdft *p)
{
     return (1
	     && p->I == p->O
	     && pln->rnk >= 2
	     && transposep(pln));
}

/**************************************************************/
/* rank 2, in place, square transpose, tiled */
static void apply_ip_sq_tiled(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     UNUSED(O);
     transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiled));
}

static int applicable_ip_sq_tiled(const P *pln, const problem_rdft *p)
{
     return (1
	     && applicable_ip_sq(pln, p)

	     /* somewhat arbitrary */
	     && X(compute_tilesz)(pln->vl, 2) > 4
	  );
}

/**************************************************************/
/* rank 2, in place, square transpose, tiled, buffered */
static void apply_ip_sq_tiledbuf(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     UNUSED(O);
     transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiledbuf));
}

#define applicable_ip_sq_tiledbuf applicable_ip_sq_tiled

/**************************************************************/
static int applicable(const S *ego, const problem *p_)
{
     const problem_rdft *p = (const problem_rdft *) p_;
     P pln;
     return (1
	     && p->sz->rnk == 0
	     && FINITE_RNK(p->vecsz->rnk)
	     && fill_iodim(&pln, p)
	     && ego->applicable(&pln, p)
	  );
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     int i;
     p->print(p, "(%s/%D", ego->nam, ego->vl);
     for (i = 0; i < ego->rnk; ++i)
	  p->print(p, "%v", ego->d[i].n);
     p->print(p, ")");
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const problem_rdft *p;
     const S *ego = (const S *) ego_;
     P *pln;
     int retval;

     static const plan_adt padt = {
	  X(rdft_solve), X(null_awake), print, X(plan_null_destroy)
     };

     UNUSED(plnr);

     if (!applicable(ego, p_))
          return (plan *) 0;

     p = (const problem_rdft *) p_;
     pln = MKPLAN_RDFT(P, &padt, ego->apply);

     retval = fill_iodim(pln, p);
     (void)retval; /* UNUSED unless DEBUG */
     A(retval);
     A(pln->vl > 0); /* because FINITE_RNK(p->vecsz->rnk) holds */
     pln->nam = ego->nam;

     /* X(tensor_sz)(p->vecsz) loads, X(tensor_sz)(p->vecsz) stores */
     X(ops_other)(2 * X(tensor_sz)(p->vecsz), &pln->super.super.ops);
     return &(pln->super.super);
}


void X(rdft_rank0_register)(planner *p)
{
     unsigned i;
     static struct {
	  rdftapply apply;
	  int (*applicable)(const P *, const problem_rdft *);
	  const char *nam;
     } tab[] = {
	  { apply_memcpy,   applicable_memcpy,   "rdft-rank0-memcpy" },
	  { apply_memcpy_loop,   applicable_memcpy_loop,  
	    "rdft-rank0-memcpy-loop" },
	  { apply_iter,     applicable_iter,     "rdft-rank0-iter-ci" },
	  { apply_cpy2dco,  applicable_cpy2dco,  "rdft-rank0-iter-co" },
	  { apply_tiled,    applicable_tiled,    "rdft-rank0-tiled" },
	  { apply_tiledbuf, applicable_tiledbuf, "rdft-rank0-tiledbuf" },
	  { apply_ip_sq,    applicable_ip_sq,    "rdft-rank0-ip-sq" },
	  { 
	       apply_ip_sq_tiled,
	       applicable_ip_sq_tiled,
	       "rdft-rank0-ip-sq-tiled" 
	  },
	  { 
	       apply_ip_sq_tiledbuf,
	       applicable_ip_sq_tiledbuf,
	       "rdft-rank0-ip-sq-tiledbuf" 
	  },
     };

     for (i = 0; i < sizeof(tab) / sizeof(tab[0]); ++i) {
	  static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
	  S *slv = MKSOLVER(S, &sadt);
	  slv->apply = tab[i].apply;
	  slv->applicable = tab[i].applicable;
	  slv->nam = tab[i].nam;
	  REGISTER_SOLVER(p, &(slv->super));
     }
}