view src/fftw-3.3.8/mpi/rdft-rank1-bigvec.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* Complex RDFTs of rank == 1 when the vector length vn is >= # processes.
   In this case, we don't need to use a six-step type algorithm, and can
   instead transpose the RDFT dimension with the vector dimension to 
   make the RDFT local. */

#include "mpi-rdft.h"
#include "mpi-transpose.h"

typedef struct {
     solver super;
     int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
     rearrangement rearrange;
} S;

typedef struct {
     plan_mpi_rdft super;

     plan *cldt_before, *cld, *cldt_after;
     int preserve_input;
     rearrangement rearrange;
} P;

static void apply(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     plan_rdft *cld, *cldt_before, *cldt_after;
     
     /* global transpose */
     cldt_before = (plan_rdft *) ego->cldt_before;
     cldt_before->apply(ego->cldt_before, I, O);
     
     if (ego->preserve_input) I = O;
	  
     /* 1d RDFT(s) */
     cld = (plan_rdft *) ego->cld;
     cld->apply(ego->cld, O, I);
     
     /* global transpose */
     cldt_after = (plan_rdft *) ego->cldt_after;
     cldt_after->apply(ego->cldt_after, I, O);
}

static int applicable(const S *ego, const problem *p_,
		      const planner *plnr)
{
     const problem_mpi_rdft *p = (const problem_mpi_rdft *) p_;
     int n_pes;
     MPI_Comm_size(p->comm, &n_pes);
     return (1
	     && p->sz->rnk == 1
	     && !(p->flags & ~RANK1_BIGVEC_ONLY)
	     && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
					  && p->I != p->O))

#if 0 /* don't need this check since no other rank-1 rdft solver */
	     && (p->vn >= n_pes /* TODO: relax this, using more memory? */
		 || (p->flags & RANK1_BIGVEC_ONLY))
#endif

	     && XM(rearrange_applicable)(ego->rearrange,
					 p->sz->dims[0], p->vn, n_pes)

	     && (!NO_SLOWP(plnr) /* slow if rdft-serial is applicable */
                 || !XM(rdft_serial_applicable)(p))
	  );
}

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     X(plan_awake)(ego->cldt_before, wakefulness);
     X(plan_awake)(ego->cld, wakefulness);
     X(plan_awake)(ego->cldt_after, wakefulness);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(plan_destroy_internal)(ego->cldt_after);
     X(plan_destroy_internal)(ego->cld);
     X(plan_destroy_internal)(ego->cldt_before);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     const char descrip[][16] = { "contig", "discontig", "square-after",
				  "square-middle", "square-before" };
     p->print(p, "(mpi-rdft-rank1-bigvec/%s%s %(%p%) %(%p%) %(%p%))",
	      descrip[ego->rearrange], ego->preserve_input==2 ?"/p":"",
	      ego->cldt_before, ego->cld, ego->cldt_after);
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const S *ego = (const S *) ego_;
     const problem_mpi_rdft *p;
     P *pln;
     plan *cld = 0, *cldt_before = 0, *cldt_after = 0;
     R *I, *O;
     INT yblock, yb, nx, ny, vn;
     int my_pe, n_pes;
     static const plan_adt padt = {
          XM(rdft_solve), awake, print, destroy
     };

     UNUSED(ego);

     if (!applicable(ego, p_, plnr))
          return (plan *) 0;

     p = (const problem_mpi_rdft *) p_;

     MPI_Comm_rank(p->comm, &my_pe);
     MPI_Comm_size(p->comm, &n_pes);
     
     nx = p->sz->dims[0].n;
     if (!(ny = XM(rearrange_ny)(ego->rearrange, p->sz->dims[0],p->vn,n_pes)))
	  return (plan *) 0;
     vn = p->vn / ny;
     A(ny * vn == p->vn);

     yblock = XM(default_block)(ny, n_pes);
     cldt_before = X(mkplan_d)(plnr,
			       XM(mkproblem_transpose)(
				    nx, ny, vn,
				    I = p->I, O = p->O,
				    p->sz->dims[0].b[IB], yblock,
				    p->comm, 0));
     if (XM(any_true)(!cldt_before, p->comm)) goto nada;	  
     if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) { I = O; }
     
     yb = XM(block)(ny, yblock, my_pe);
     cld = X(mkplan_d)(plnr,
		       X(mkproblem_rdft_1_d)(X(mktensor_1d)(nx, vn, vn),
					     X(mktensor_2d)(yb, vn*nx, vn*nx,
							    vn, 1, 1),
					     O, I, p->kind[0]));
     if (XM(any_true)(!cld, p->comm)) goto nada;	  
     
     cldt_after = X(mkplan_d)(plnr,
			      XM(mkproblem_transpose)(
				   ny, nx, vn,
				   I, O,
				   yblock, p->sz->dims[0].b[OB], 
				   p->comm, 0));
     if (XM(any_true)(!cldt_after, p->comm)) goto nada;	  

     pln = MKPLAN_MPI_RDFT(P, &padt, apply);

     pln->cldt_before = cldt_before;
     pln->cld = cld;
     pln->cldt_after = cldt_after;
     pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
     pln->rearrange = ego->rearrange;

     X(ops_add)(&cldt_before->ops, &cld->ops, &pln->super.super.ops);
     X(ops_add2)(&cldt_after->ops, &pln->super.super.ops);

     return &(pln->super.super);

 nada:
     X(plan_destroy_internal)(cldt_after);
     X(plan_destroy_internal)(cld);
     X(plan_destroy_internal)(cldt_before);
     return (plan *) 0;
}

static solver *mksolver(rearrangement rearrange, int preserve_input)
{
     static const solver_adt sadt = { PROBLEM_MPI_RDFT, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     slv->rearrange = rearrange;
     slv->preserve_input = preserve_input;
     return &(slv->super);
}

void XM(rdft_rank1_bigvec_register)(planner *p)
{
     rearrangement rearrange;
     int preserve_input;
     FORALL_REARRANGE(rearrange)
	  for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
	       REGISTER_SOLVER(p, mksolver(rearrange, preserve_input));
}