view src/fftw-3.3.8/mpi/block.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include "ifftw-mpi.h"

INT XM(num_blocks)(INT n, INT block)
{
     return (n + block - 1) / block;
}

int XM(num_blocks_ok)(INT n, INT block, MPI_Comm comm)
{
     int n_pes;
     MPI_Comm_size(comm, &n_pes);
     return n_pes >= XM(num_blocks)(n, block);
}

/* Pick a default block size for dividing a problem of size n among
   n_pes processes.  Divide as equally as possible, while minimizing
   the maximum block size among the processes as well as the number of
   processes with nonzero blocks. */
INT XM(default_block)(INT n, int n_pes)
{
     return ((n + n_pes - 1) / n_pes);
}

/* For a given block size and dimension n, compute the block size 
   on the given process. */
INT XM(block)(INT n, INT block, int which_block)
{
     INT d = n - which_block * block;
     return d <= 0 ? 0 : (d > block ? block : d);
}

static INT num_blocks_kind(const ddim *dim, block_kind k)
{
     return XM(num_blocks)(dim->n, dim->b[k]);
}

INT XM(num_blocks_total)(const dtensor *sz, block_kind k)
{
     if (FINITE_RNK(sz->rnk)) {
	  int i;
	  INT ntot = 1;
	  for (i = 0; i < sz->rnk; ++i)
	       ntot *= num_blocks_kind(sz->dims + i, k);
	  return ntot;
     }
     else
	  return 0;
}

int XM(idle_process)(const dtensor *sz, block_kind k, int which_pe)
{
     return (which_pe >= XM(num_blocks_total)(sz, k));
}

/* Given a non-idle process which_pe, computes the coordinate
   vector coords[rnk] giving the coordinates of a block in the
   matrix of blocks.  k specifies whether we are talking about
   the input or output data distribution. */
void XM(block_coords)(const dtensor *sz, block_kind k, int which_pe, 
		     INT *coords)
{
     int i;
     A(!XM(idle_process)(sz, k, which_pe) && FINITE_RNK(sz->rnk));
     for (i = sz->rnk - 1; i >= 0; --i) {
	  INT nb = num_blocks_kind(sz->dims + i, k);
	  coords[i] = which_pe % nb;
	  which_pe /= nb;
     }
}

INT XM(total_block)(const dtensor *sz, block_kind k, int which_pe)
{
     if (XM(idle_process)(sz, k, which_pe))
	  return 0;
     else {
	  int i;
	  INT N = 1, *coords;
	  STACK_MALLOC(INT*, coords, sizeof(INT) * sz->rnk);
	  XM(block_coords)(sz, k, which_pe, coords);
	  for (i = 0; i < sz->rnk; ++i)
	       N *= XM(block)(sz->dims[i].n, sz->dims[i].b[k], coords[i]);
	  STACK_FREE(coords);
	  return N;
     }
}

/* returns whether sz is local for dims >= dim */
int XM(is_local_after)(int dim, const dtensor *sz, block_kind k)
{
     if (FINITE_RNK(sz->rnk))
	  for (; dim < sz->rnk; ++dim)
	       if (XM(num_blocks)(sz->dims[dim].n, sz->dims[dim].b[k]) > 1)
		    return 0;
     return 1;
}

int XM(is_local)(const dtensor *sz, block_kind k)
{
     return XM(is_local_after)(0, sz, k);
}

/* Return whether sz is distributed for k according to a simple
   1d block distribution in the first or second dimensions */
int XM(is_block1d)(const dtensor *sz, block_kind k)
{
     int i;
     if (!FINITE_RNK(sz->rnk)) return 0;
     for (i = 0; i < sz->rnk && num_blocks_kind(sz->dims + i, k) == 1; ++i) ;
     return(i < sz->rnk && i < 2 && XM(is_local_after)(i + 1, sz, k));

}