view src/fftw-3.3.8/libbench2/verify-dft.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


#include "verify.h"

/* copy A into B, using output stride of A and input stride of B */
typedef struct {
     dotens2_closure k;
     R *ra; R *ia;
     R *rb; R *ib;
     int scalea, scaleb;
} cpy_closure;

static void cpy0(dotens2_closure *k_, 
		 int indxa, int ondxa, int indxb, int ondxb)
{
     cpy_closure *k = (cpy_closure *)k_;
     k->rb[indxb * k->scaleb] = k->ra[ondxa * k->scalea];
     k->ib[indxb * k->scaleb] = k->ia[ondxa * k->scalea];
     UNUSED(indxa); UNUSED(ondxb);
}

static void cpy(R *ra, R *ia, const bench_tensor *sza, int scalea,
		R *rb, R *ib, const bench_tensor *szb, int scaleb)
{
     cpy_closure k;
     k.k.apply = cpy0;
     k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
     k.scalea = scalea; k.scaleb = scaleb;
     bench_dotens2(sza, szb, &k.k);
}

typedef struct {
     dofft_closure k;
     bench_problem *p;
} dofft_dft_closure;

static void dft_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
{
     dofft_dft_closure *k = (dofft_dft_closure *)k_;
     bench_problem *p = k->p;
     bench_tensor *totalsz, *pckdsz;
     bench_tensor *totalsz_swap, *pckdsz_swap;
     bench_real *ri, *ii, *ro, *io;
     int totalscale;

     totalsz = tensor_append(p->vecsz, p->sz);
     pckdsz = verify_pack(totalsz, 2);
     ri = (bench_real *) p->in;
     ro = (bench_real *) p->out;

     totalsz_swap = tensor_copy_swapio(totalsz);
     pckdsz_swap = tensor_copy_swapio(pckdsz);

     /* confusion: the stride is the distance between complex elements
	when using interleaved format, but it is the distance between
	real elements when using split format */
     if (p->split) {
	  ii = p->ini ? (bench_real *) p->ini : ri + p->iphyssz;
	  io = p->outi ? (bench_real *) p->outi : ro + p->ophyssz;
	  totalscale = 1;
     } else {
	  ii = p->ini ? (bench_real *) p->ini : ri + 1;
	  io = p->outi ? (bench_real *) p->outi : ro + 1;
	  totalscale = 2;
     }

     cpy(&c_re(in[0]), &c_im(in[0]), pckdsz, 1,
	    ri, ii, totalsz, totalscale);
     after_problem_ccopy_from(p, ri, ii);
     doit(1, p);
     after_problem_ccopy_to(p, ro, io);
     if (k->k.recopy_input)
	  cpy(ri, ii, totalsz_swap, totalscale,
	      &c_re(in[0]), &c_im(in[0]), pckdsz_swap, 1);
     cpy(ro, io, totalsz, totalscale,
	 &c_re(out[0]), &c_im(out[0]), pckdsz, 1);

     tensor_destroy(totalsz);
     tensor_destroy(pckdsz);
     tensor_destroy(totalsz_swap);
     tensor_destroy(pckdsz_swap);
}

void verify_dft(bench_problem *p, int rounds, double tol, errors *e)
{
     C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
     int n, vecn, N;
     dofft_dft_closure k;

     BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);

     k.k.apply = dft_apply;
     k.k.recopy_input = 0;
     k.p = p;

     if (rounds == 0)
	  rounds = 20;  /* default value */

     n = tensor_sz(p->sz);
     vecn = tensor_sz(p->vecsz);
     N = n * vecn;

     inA = (C *) bench_malloc(N * sizeof(C));
     inB = (C *) bench_malloc(N * sizeof(C));
     inC = (C *) bench_malloc(N * sizeof(C));
     outA = (C *) bench_malloc(N * sizeof(C));
     outB = (C *) bench_malloc(N * sizeof(C));
     outC = (C *) bench_malloc(N * sizeof(C));
     tmp = (C *) bench_malloc(N * sizeof(C));

     e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC, 
		    tmp, rounds, tol);
     e->l = linear(&k.k, 0, N, inA, inB, inC, outA, outB, outC,
		   tmp, rounds, tol);

     e->s = 0.0;
     e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
				inA, inB, outA, outB, 
				tmp, rounds, tol, TIME_SHIFT));
     e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
				inA, inB, outA, outB, 
				tmp, rounds, tol, FREQ_SHIFT));

     if (!p->in_place && !p->destroy_input)
	  preserves_input(&k.k, 0, N, inA, inB, outB, rounds);

     bench_free(tmp);
     bench_free(outC);
     bench_free(outB);
     bench_free(outA);
     bench_free(inC);
     bench_free(inB);
     bench_free(inA);
}


void accuracy_dft(bench_problem *p, int rounds, int impulse_rounds,
		  double t[6])
{
     dofft_dft_closure k;
     int n;
     C *a, *b;

     BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
     BENCH_ASSERT(p->sz->rnk == 1);
     BENCH_ASSERT(p->vecsz->rnk == 0);

     k.k.apply = dft_apply;
     k.k.recopy_input = 0;
     k.p = p;
     n = tensor_sz(p->sz);

     a = (C *) bench_malloc(n * sizeof(C));
     b = (C *) bench_malloc(n * sizeof(C));
     accuracy_test(&k.k, 0, p->sign, n, a, b, rounds, impulse_rounds, t);
     bench_free(b);
     bench_free(a);
}