view src/fftw-3.3.8/genfft/util.ml @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
line wrap: on
line source
(*
 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 *)

(* various utility functions *)
open List
open Unix 

(*****************************************
 * Integer operations
 *****************************************)
(* fint the inverse of n modulo m *)
let invmod n m =
    let rec loop i =
	if ((i * n) mod m == 1) then i
	else loop (i + 1)
    in
	loop 1

(* Yooklid's algorithm *)
let rec gcd n m =
    if (n > m)
      then gcd m n
    else
      let r = m mod n
      in
	  if (r == 0) then n
	  else gcd r n

(* reduce the fraction m/n to lowest terms, modulo factors of n/n *)
let lowest_terms n m =
    if (m mod n == 0) then
      (1,0)
    else
      let nn = (abs n) in let mm = m * (n / nn)
      in let mpos = 
	  if (mm > 0) then (mm mod nn)
	  else (mm + (1 + (abs mm) / nn) * nn) mod nn
      and d = gcd nn (abs mm)
      in (nn / d, mpos / d)

(* find a generator for the multiplicative group mod p
   (where p must be prime for a generator to exist!!) *)

exception No_Generator

let find_generator p =
    let rec period x prod =
 	if (prod == 1) then 1
	else 1 + (period x (prod * x mod p))
    in let rec findgen x =
	if (x == 0) then raise No_Generator
	else if ((period x x) == (p - 1)) then x
	else findgen ((x + 1) mod p)
    in findgen 1

(* raise x to a power n modulo p (requires n > 0) (in principle,
   negative powers would be fine, provided that x and p are relatively
   prime...we don't need this functionality, though) *)

exception Negative_Power

let rec pow_mod x n p =
    if (n == 0) then 1
    else if (n < 0) then raise Negative_Power
    else if (n mod 2 == 0) then pow_mod (x * x mod p) (n / 2) p
    else x * (pow_mod x (n - 1) p) mod p

(******************************************
 * auxiliary functions 
 ******************************************)
let rec forall id combiner a b f =
    if (a >= b) then id
    else combiner (f a) (forall id combiner (a + 1) b f)

let sum_list l = fold_right (+) l 0
let max_list l = fold_right (max) l (-999999)
let min_list l = fold_right (min) l 999999
let count pred = fold_left 
    (fun a elem -> if (pred elem) then 1 + a else a) 0
let remove elem = List.filter (fun e -> (e != elem))
let cons a b = a :: b
let null = function 
    [] -> true
  | _ -> false
let for_list l f = List.iter f l
let rmap l f = List.map f l

(* functional composition *)
let (@@) f g x = f (g x)

let forall_flat a b = forall [] (@) a b

let identity x = x

let rec minimize f = function
    [] -> None
  | elem :: rest ->
      match minimize f rest with
	None -> Some elem
      |	Some x -> if (f x) >= (f elem) then Some elem else Some x


let rec find_elem condition = function
    [] -> None
  | elem :: rest ->
      if condition elem then
	Some elem
      else
	find_elem condition rest


(* find x, x >= a, such that (p x) is true *)
let rec suchthat a pred =
  if (pred a) then a else suchthat (a + 1) pred

(* print an information message *)
let info string =
  if !Magic.verbose then begin
    let now = Unix.times () 
    and pid = Unix.getpid () in
    prerr_string ((string_of_int pid) ^ ": " ^
		  "at t = " ^  (string_of_float now.tms_utime) ^ " : ");
    prerr_string (string ^ "\n");
    flush Pervasives.stderr;
  end

(* iota n produces the list [0; 1; ...; n - 1] *)
let iota n = forall [] cons 0 n identity

(* interval a b produces the list [a; 1; ...; b - 1] *)
let interval a b = List.map ((+) a) (iota (b - a))

(*
 * freeze a function, i.e., compute it only once on demand, and
 * cache it into an array.
 *)
let array n f =
  let a = Array.init n (fun i -> lazy (f i))
  in fun i -> Lazy.force a.(i)


let rec take n l =
  match (n, l) with
    (0, _) -> []
  | (n, (a :: b)) -> a :: (take (n - 1) b)
  | _ -> failwith "take"

let rec drop n l =
  match (n, l) with
    (0, _) -> l
  | (n, (_ :: b)) -> drop (n - 1) b
  | _ -> failwith "drop"


let either a b =
  match a with
    Some x -> x
  | _ -> b