view src/fftw-3.3.8/genfft/c.ml @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
line wrap: on
line source
(*
 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 *)

(*
 * This module contains the definition of a C-like abstract
 * syntax tree, and functions to convert ML values into C
 * programs
 *)

open Expr
open Annotate
open List

let realtype = "R"
let realtypep = realtype ^ " *"
let extended_realtype = "E"
let constrealtype = "const " ^ realtype
let constrealtypep = constrealtype ^ " *"

let stridetype = "stride"

(***********************************
 * C program structure 
 ***********************************)
type c_decl = 
  | Decl of string * string
  | Tdecl of string                (* arbitrary text declaration *)

and c_ast =
  | Asch of annotated_schedule
  | Simd_leavefun
  | Return of c_ast
  | For of c_ast * c_ast * c_ast * c_ast
  | If of c_ast * c_ast
  | Block of (c_decl list) * (c_ast list)
  | Binop of string * c_ast * c_ast
  | Expr_assign of c_ast * c_ast
  | Stmt_assign of c_ast * c_ast
  | Comma of c_ast * c_ast
  | Integer of int
  | CVar of string
  | CCall of string * c_ast
  | CPlus of c_ast list
  | ITimes of c_ast * c_ast
  | CUminus of c_ast
and c_fcn = Fcn of string * string * (c_decl list) * c_ast


let ctimes = function
  | (Integer 1), a -> a
  | a, (Integer 1) -> a
  | a, b -> ITimes (a, b)

(*
 * C AST unparser 
 *)
let foldr_string_concat l = fold_right (^) l ""

let rec unparse_expr_c =
  let yes x = x and no x = "" in

  let rec unparse_plus maybe = 
    let maybep = maybe " + " in
    function
    | [] -> ""
    | (Uminus (Times (a, b))) :: (Uminus c) :: d -> 
	maybep ^ (op "FNMA" a b c) ^ (unparse_plus yes d)
    | (Uminus c) :: (Uminus (Times (a, b))) :: d -> 
	maybep ^ (op "FNMA" a b c) ^ (unparse_plus yes d)
    | (Uminus (Times (a, b))) :: c :: d -> 
	maybep ^ (op "FNMS" a b c) ^ (unparse_plus yes d)
    | c :: (Uminus (Times (a, b))) :: d -> 
	maybep ^ (op "FNMS" a b c) ^ (unparse_plus yes d)
    | (Times (a, b)) :: (Uminus c) :: d -> 
	maybep ^ (op "FMS" a b c) ^ (unparse_plus yes d)
    | (Uminus c) :: (Times (a, b)) :: d -> 
	maybep ^ (op "FMS" a b c) ^ (unparse_plus yes d)
    | (Times (a, b)) :: c :: d -> 
	maybep ^ (op "FMA" a b c) ^ (unparse_plus yes d)
    | c :: (Times (a, b)) :: d -> 
	maybep ^ (op "FMA" a b c) ^ (unparse_plus yes d)
    | (Uminus a :: b) -> 
	" - " ^ (parenthesize a) ^ (unparse_plus yes b)
    | (a :: b) -> 
	maybep ^ (parenthesize a) ^ (unparse_plus yes b)
  and parenthesize x = match x with
  | (Load _) -> unparse_expr_c x
  | (Num _) -> unparse_expr_c x
  | _ -> "(" ^ (unparse_expr_c x) ^ ")"
  and op nam a b c =
    nam ^ "(" ^ (unparse_expr_c a) ^ ", " ^ (unparse_expr_c b) ^ ", " ^
    (unparse_expr_c c) ^ ")"
      			      
  in function
    | Load v -> Variable.unparse v
    | Num n -> Number.to_konst n
    | Plus [] -> "0.0 /* bug */"
    | Plus [a] -> " /* bug */ " ^ (unparse_expr_c a)
    | Plus a -> (unparse_plus no a)
    | Times (a, b) -> (parenthesize a) ^ " * " ^ (parenthesize b)
    | Uminus (Plus [a; Uminus b]) -> unparse_plus no [b; Uminus a]
    | Uminus a -> "- " ^ (parenthesize a)
    | _ -> failwith "unparse_expr_c"

and unparse_expr_generic = 
  let rec u x = unparse_expr_generic x
  and unary op a = Printf.sprintf "%s(%s)" op (u a)
  and binary op a b = Printf.sprintf "%s(%s, %s)" op (u a) (u b)
  and ternary op a b c = Printf.sprintf "%s(%s, %s, %s)" op (u a) (u b) (u c)
  and quaternary op a b c d = 
    Printf.sprintf "%s(%s, %s, %s, %s)" op (u a) (u b) (u c) (u d)
  and unparse_plus = function
    | [(Uminus (Times (a, b))); Times (c, d)] -> quaternary "FNMMS" a b c d
    | [Times (c, d); (Uminus (Times (a, b)))] -> quaternary "FNMMS" a b c d
    | [Times (c, d); (Times (a, b))] -> quaternary "FMMA" a b c d
    | [(Uminus (Times (a, b))); c] -> ternary "FNMS" a b c
    | [c; (Uminus (Times (a, b)))] -> ternary "FNMS" a b c
    | [(Uminus c); (Times (a, b))] -> ternary "FMS" a b c
    | [(Times (a, b)); (Uminus c)] -> ternary "FMS" a b c
    | [c; (Times (a, b))] -> ternary "FMA" a b c
    | [(Times (a, b)); c] -> ternary "FMA" a b c
    | [a; Uminus b] -> binary "SUB" a b
    | [a; b] -> binary "ADD" a b
    | a :: b :: c -> binary "ADD" a (Plus (b :: c))
    | _ -> failwith "unparse_plus"
  in function
    | Load v -> Variable.unparse v 
    | Num n -> Number.to_konst n
    | Plus a -> unparse_plus a
    | Times (a, b) -> binary "MUL" a b
    | Uminus a -> unary "NEG" a
    | _ -> failwith "unparse_expr"

and unparse_expr x = 
  if !Magic.generic_arith then
    unparse_expr_generic x
  else
    unparse_expr_c x

and unparse_assignment (Assign (v, x)) =
  (Variable.unparse v) ^ " = " ^ (unparse_expr x) ^ ";\n"

and unparse_annotated force_bracket = 
  let rec unparse_code = function
      ADone -> ""
    | AInstr i -> unparse_assignment i
    | ASeq (a, b) -> 
        (unparse_annotated false a) ^ (unparse_annotated false b)
  and declare_variables l = 
    let rec uvar = function
	[] -> failwith "uvar"
      |	[v] -> (Variable.unparse v) ^ ";\n"
      | a :: b -> (Variable.unparse a) ^ ", " ^ (uvar b)
    in let rec vvar l = 
      let s = if !Magic.compact then 15 else 1 in
      if (List.length l <= s) then
	match l with
	  [] -> ""
	| _ -> extended_realtype ^ " " ^ (uvar l)
      else
	(vvar (Util.take s l)) ^ (vvar (Util.drop s l))
    in vvar (List.filter Variable.is_temporary l)
  in function
      Annotate (_, _, decl, _, code) ->
        if (not force_bracket) && (Util.null decl) then 
          unparse_code code
        else "{\n" ^
          (declare_variables decl) ^
          (unparse_code code) ^
	  "}\n"

and unparse_decl = function
  | Decl (a, b) -> a ^ " " ^ b ^ ";\n"
  | Tdecl x -> x

and unparse_ast = 
  let rec unparse_plus = function
    | [] -> ""
    | (CUminus a :: b) -> " - " ^ (parenthesize a) ^ (unparse_plus b)
    | (a :: b) -> " + " ^ (parenthesize a) ^ (unparse_plus b)
  and parenthesize x = match x with
  | (CVar _) -> unparse_ast x
  | (CCall _) -> unparse_ast x
  | (Integer _) -> unparse_ast x
  | _ -> "(" ^ (unparse_ast x) ^ ")"

  in
  function
    | Asch a -> (unparse_annotated true a)
    | Simd_leavefun -> "" (* used only in SIMD code *)
    | Return x -> "return " ^ unparse_ast x ^ ";"
    | For (a, b, c, d) ->
	"for (" ^
	unparse_ast a ^ "; " ^ unparse_ast b ^ "; " ^ unparse_ast c
	^ ")" ^ unparse_ast d
    | If (a, d) ->
	"if (" ^
	unparse_ast a 
	^ ")" ^ unparse_ast d
    | Block (d, s) ->
	if (s == []) then ""
	else 
          "{\n"                                      ^ 
          foldr_string_concat (map unparse_decl d)   ^ 
          foldr_string_concat (map unparse_ast s)    ^
          "}\n"      
    | Binop (op, a, b) -> (unparse_ast a) ^ op ^ (unparse_ast b)
    | Expr_assign (a, b) -> (unparse_ast a) ^ " = " ^ (unparse_ast b)
    | Stmt_assign (a, b) -> (unparse_ast a) ^ " = " ^ (unparse_ast b) ^ ";\n"
    | Comma (a, b) -> (unparse_ast a) ^ ", " ^ (unparse_ast b)
    | Integer i -> string_of_int i
    | CVar s -> s
    | CCall (s, x) -> s ^ "(" ^ (unparse_ast x) ^ ")"
    | CPlus [] -> "0 /* bug */"
    | CPlus [a] -> " /* bug */ " ^ (unparse_ast a)
    | CPlus (a::b) -> (parenthesize a) ^ (unparse_plus b)
    | ITimes (a, b) -> (parenthesize a) ^ " * " ^ (parenthesize b)
    | CUminus a -> "- " ^ (parenthesize a)

and unparse_function = function
    Fcn (typ, name, args, body) ->
      let rec unparse_args = function
          [Decl (a, b)] -> a ^ " " ^ b 
	| (Decl (a, b)) :: s -> a ^ " " ^ b  ^ ", "
            ^  unparse_args s
	| [] -> ""
	| _ -> failwith "unparse_function"
      in 
      (typ ^ " " ^ name ^ "(" ^ unparse_args args ^ ")\n" ^
       unparse_ast body)


(*************************************************************
 * traverse a a function and return a list of all expressions,
 * in the execution order
 **************************************************************)
let rec fcn_to_expr_list = fun (Fcn (_, _, _, body)) -> ast_to_expr_list body 
and acode_to_expr_list = function
    AInstr (Assign (_, x)) -> [x]
  | ASeq (a, b) -> 
      (asched_to_expr_list a) @ (asched_to_expr_list b)
  | _ -> []
and asched_to_expr_list (Annotate (_, _, _, _, code)) =
  acode_to_expr_list code
and ast_to_expr_list = function
    Asch a -> asched_to_expr_list a
  | Block (_, a) -> flatten (map ast_to_expr_list a)
  | For (_, _, _, body) ->  ast_to_expr_list body
  | If (_, body) ->  ast_to_expr_list body
  | _ -> []

(***********************
 * Extracting Constants
 ***********************)

(* add a new key & value to a list of (key,value) pairs, where
   the keys are floats and each key is unique up to almost_equal *)

let extract_constants f =
  let constlist = flatten (map expr_to_constants (ast_to_expr_list f))
  in map
       (fun n ->
	  Tdecl 
	    ("DK(" ^ (Number.to_konst n) ^ ", " ^ (Number.to_string n) ^ 
	       ");\n"))
       (unique_constants constlist)
       
(******************************
   Extracting operation counts 
 ******************************)

let count_stack_vars =
  let rec count_acode = function
    | ASeq (a, b) -> max (count_asched a) (count_asched b)
    | _ -> 0
  and count_asched (Annotate (_, _, decl, _, code)) =
    (length decl) + (count_acode code)
  and count_ast = function
    | Asch a -> count_asched a
    | Block (d, a) -> (length d) + (Util.max_list (map count_ast a))
    | For (_, _, _, body) -> count_ast body
    | If (_, body) -> count_ast body
    | _ -> 0
  in function (Fcn (_, _, _, body)) -> count_ast body

let count_memory_acc f =
  let rec count_var v =
    if (Variable.is_locative v)	then 1 else 0
  and count_acode = function
    | AInstr (Assign (v, _)) -> count_var v
    | ASeq (a, b) -> (count_asched a) + (count_asched b)
    | _ -> 0
  and count_asched = function
      Annotate (_, _, _, _, code) -> count_acode code
  and count_ast = function
    | Asch a -> count_asched a
    | Block (_, a) -> (Util.sum_list (map count_ast a))
    | Comma (a, b) -> (count_ast a) + (count_ast b)
    | For (_, _, _, body) -> count_ast body
    | If (_, body) -> count_ast body
    | _ -> 0
  and count_acc_expr_func acc = function
    | Load v -> acc + (count_var v)
    | Plus a -> fold_left count_acc_expr_func acc a
    | Times (a, b) -> fold_left count_acc_expr_func acc [a; b]
    | Uminus a -> count_acc_expr_func acc a
    | _ -> acc
  in let (Fcn (typ, name, args, body)) = f
  in (count_ast body) + 
    fold_left count_acc_expr_func 0 (fcn_to_expr_list f)

let good_for_fma = To_alist.good_for_fma

let build_fma = function
  | [a; Times (b, c)] when good_for_fma (b, c) -> Some (a, b, c)
  | [Times (b, c); a] when good_for_fma (b, c) -> Some (a, b, c)
  | [a; Uminus (Times (b, c))] when good_for_fma (b, c) -> Some (a, b, c)
  | [Uminus (Times (b, c)); a] when good_for_fma (b, c) -> Some (a, b, c)
  | _ -> None

let rec count_flops_expr_func (adds, mults, fmas) = function
  | Plus [] -> (adds, mults, fmas)
  | Plus ([_; _] as a) -> 
      begin
	match build_fma a with
	  | None ->
	      fold_left count_flops_expr_func 
		(adds + (length a) - 1, mults, fmas) a
	  | Some (a, b, c) ->
	      fold_left count_flops_expr_func (adds, mults, fmas+1) [a; b; c]
      end
  | Plus (a :: b) -> 
      count_flops_expr_func (adds, mults, fmas) (Plus [a; Plus b])
  | Times (NaN MULTI_A,_)  -> (adds, mults, fmas)
  | Times (NaN MULTI_B,_)  -> (adds, mults, fmas)
  | Times (NaN I,b) -> count_flops_expr_func (adds, mults, fmas) b
  | Times (NaN CONJ,b) -> count_flops_expr_func (adds, mults, fmas) b
  | Times (a,b) -> fold_left count_flops_expr_func (adds, mults+1, fmas) [a; b]
  | CTimes (a,b) -> 
      fold_left count_flops_expr_func (adds+1, mults+2, fmas) [a; b]
  | CTimesJ (a,b) -> 
      fold_left count_flops_expr_func (adds+1, mults+2, fmas) [a; b]
  | Uminus a -> count_flops_expr_func (adds, mults, fmas) a
  | _ -> (adds, mults, fmas)

let count_flops f = 
    fold_left count_flops_expr_func (0, 0, 0) (fcn_to_expr_list f)

let count_constants f = 
    length (unique_constants (flatten (map expr_to_constants (fcn_to_expr_list f))))

let arith_complexity f =
  let (a, m, fmas) = count_flops f
  and v = count_stack_vars f
  and c = count_constants f
  and mem = count_memory_acc f
  in (a, m, fmas, v, c, mem)

(* print the operation costs *)
let print_cost f =
  let Fcn (_, _, _, _) = f 
  and (a, m, fmas, v, c, mem) = arith_complexity f
  in
  "/*\n"^
  " * This function contains " ^
  (string_of_int (a + fmas)) ^ " FP additions, "  ^
  (string_of_int (m + fmas)) ^ " FP multiplications,\n" ^
  " * (or, " ^
  (string_of_int a) ^ " additions, "  ^
  (string_of_int m) ^ " multiplications, " ^
  (string_of_int fmas) ^ " fused multiply/add),\n" ^
  " * " ^ (string_of_int v) ^ " stack variables, " ^
  (string_of_int c) ^ " constants, and " ^
  (string_of_int mem) ^ " memory accesses\n" ^
  " */\n"

(*****************************************
 * functions that create C arrays 
 *****************************************)
type stride = 
  | SVar of string
  | SConst of string
  | SInteger of int
  | SNeg of stride

type sstride =
  | Simple of int
  | Constant of (string * int)
  | Composite of (string * int)
  | Negative of sstride

let rec simplify_stride stride i =
    match (stride, i) with
      (_, 0) -> Simple 0
    | (SInteger n, i) -> Simple (n * i)
    | (SConst s, i) -> Constant (s, i)
    | (SVar s, i) -> Composite (s, i)
    | (SNeg x, i) -> 
	match (simplify_stride x i) with
	| Negative y -> y
	| y -> Negative y
  
let rec cstride_to_string = function
  | Simple i -> string_of_int i
  | Constant (s, i) -> 
        if !Magic.lisp_syntax then
	  "(* " ^ s ^ " " ^ (string_of_int i) ^ ")"
	else
	  s ^ " * " ^ (string_of_int i)
  | Composite (s, i) -> 
        if !Magic.lisp_syntax then
	  "(* " ^ s ^ " " ^ (string_of_int i) ^ ")"
	else
	  "WS(" ^ s ^ ", " ^ (string_of_int i) ^ ")"
  | Negative x -> "-" ^ cstride_to_string x

let aref name index = 
  if !Magic.lisp_syntax then
    Printf.sprintf "(aref %s %s)"  name index
  else
    Printf.sprintf "%s[%s]"  name index

let array_subscript name stride k = 
  aref name (cstride_to_string (simplify_stride stride k))

let varray_subscript name vstride stride v i = 
  let vindex = simplify_stride vstride v
  and iindex = simplify_stride stride i
  in 
  let index = 
    match (vindex, iindex) with
      (Simple vi, Simple ii) -> string_of_int (vi + ii)
    | (Simple 0, x) -> cstride_to_string x
    | (x, Simple 0) -> cstride_to_string x
    | _ -> (cstride_to_string vindex) ^ " + " ^ (cstride_to_string iindex)
  in aref name index

let real_of s = "c_re(" ^ s ^ ")"
let imag_of s = "c_im(" ^ s ^ ")"

let flops_of f =
  let (add, mul, fma) = count_flops f in
  Printf.sprintf "{ %d, %d, %d, 0 }" add mul fma